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Abstract— Engineering applications such as computer-aided 

design, robotics, and electrical network requires an efficient 

computational technique of finding all roots of a system of 

nonlinear polynomial equations in s variables which lie within an 

s dimensional box. We propose an algorithm for obtaining the 

roots of the polynomial system, it is based on the following 

technique: 

1) transformation of the original nonlinear algebraic equations 

into polynomial B-spline form; 2) includes a pruning step using B-

spline Krawczyk operator.  

We compare the performance of the proposed B-spline 

Krawczyk operator with that of Interval Krawczyk operator using 

numerical examples, providing the superiority of the proposed 

approach. 

Keywords — Polynomial B-spline, finding roots, Interval 

Krawczyk, Polynomial systems. 

I. INTRODUCTION 

Engineering applications such as computer-aided design, 
robotics, and electrical network requires an efficient 
computational technique of finding all roots of a system of 
nonlinear polynomial equations in s variables which lie within 
an s dimensional box. 

 In [1], [2] the authors proposed several root-finding 
algorithms to find the solutions to a system of polynomial 
equations. In [3]–[6] the authors use interval methods for solving 
systems of nonlinear algebraic equations. The approach of 
interval methods guaranteed interval enclosures to all the zeros 
of the polynomial systems can be obtained using interval branch 
and bound methods. Unfortunately, this approach often requires 
repeated evaluation of the polynomial functions, which is a time-
consuming operation.  

Pruning operator such as Hansen-Sengupta, interval Newton, 
Krawczyk, etc. can be introduced to reduce the number of 
iterations. However, the evaluation of interval enclosures for 
these operators requires derivatives. Finding derivatives of 
polynomial systems using interval methods is also a time-
consuming process. Again, in [7], [8] the authors combine 
Krawczyk operator and subdivision for solving nonlinear system 

of polynomial equations in B-spline and Bernstein basis 
respectively. 

An algorithm was proposed based on B-spline expansion 
approach combined with B-spline Krawczyk operator to find the 
solutions of a system of polynomial equations i.e. roots. The B-
spline coefficient computation algorithm was proposed in [9] for 
solving global optimization problems. We combine the 
advantages of the B-spline Krawczyk algorithm, and the B-
spline coefficient algorithm to propose a new algorithm to solve 
a system of nonlinear polynomial equations.  

In the B-spline expansion approach, the objective function 
polynomial in power form is transformed into the polynomial B-
spline form of the same degree, (m). Then, the B-spline 
coefficients give a bound on the range of the objective function.  

This paper is organized as follows: In section 2, we give a 
brief introduction about the B-spline expansion of multivariate 
power form polynomial and subdivision procedure. In section 3, 
we explain the interval Krawczyk operator and the B-spline 
Krawczyk operator algorithm. In section 4, we propose an 
algorithm for solving the system of the polynomial equation 
which includes the B-spline Krawczyk operator for pruning the 
bounds. In section 5, we illustrate the use of the proposed 
algorithm for solving a system of nonlinear polynomial 
equations by considering two numerical examples. We compare 
the performance of our proposed algorithm with the INTLAB 
based solver. Finally, in the last section, we conclude. 

II. B-SPLINE FORM 

In this section, we first give the notations and definitions, 
along with some useful properties of B-spline polynomials. 
Then, we explain the subdivision procedure for domain box.  

A. B-spline form   

Let s   be the number of variables and 

1 2= ( , ,..., ) .s

sx x x x   A multi-index I  is defined as 

  1 2= ( , , ..., ) 0
s

sI i i i    and multi-power 
Ix  is defined as 

1 2
1 2= ( , , ..., )

ii iI s
sx x x x . Given a multi-index 1 2N = ( , ,..., )sn n n  

and an index r  , we define 
, 1 1 1N = ( ,....., , , , ....,r l r r rn n n l n     
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)sn  , where 0 r rn l n    . Inequalities NI   for multi-

indices are meant component-wise, i.e. l li n  , =1, 2,..., .l s  

With 1 1 1= ( ,..., , , , ..., )r r r sI i i i i i   we associate the index 
,r lI  

given by 
, 1 1 1= ( ,..., , , , ..., )r l r r r sI i i i l i i   , where 

0 r ri l n    . A real bounded and closed interval rx  is 

defined as [ , ]r r rx x x  

:  [inf = min ,sup = max ]r r r r  x x x x where  

denotes the set of compact intervals. Let wid rx  denotes the 

width of rx , that is width :=x x xr r r . We follow the 

procedure by  [10]–[12] to obtain the B-spline representation of 
a multivariate polynomial of degree N, in order to derive bounds 

for its range over an s -dimensional box 1 2= ( , ,..., )sx x x x  , 

                 
N

( ) = , .I s

I

I

p x a x x


                                      (1)                                                  

B. Univariate case  [12] 

We consider a univariate polynomial  

    
=0

:= , , ,
n

t

t

t

p x a x x a b   (2) 

to be expressed in terms of the B-spline basis of the space of 

polynomial splines of degree m n  (i.e. order 1m ). In the 

following, we give some preliminary results about the 
construction of B-spline bases. First of all, we consider the 
following uniform grid partition 

 0 1 1= { < < < < },k kx x x xu   (3) 

of the interval = [ , ]a b , where = , 0ix a ih i k   , and 

= ( ) /h b a k . Let m  be the space of polynomials of degree 

at most m . Then the space of  splines of degree m  and class 
1mC 
 on [ , ]a b  associated with u  is defined by 

 

1

1( , ) = { ( ) : | [ , ] ,

     = 0,..., 1}.

m

m i i mS S C I S x x

i k



 



u
  (4) 

It is well known that ( , )mS u  is a linear space of dimension 

equal to k m  [13]. In order to construct a basis of locally 

supported splines for ( , )mS u , some auxiliary knots 

1mx x a     and 1k k mb x x     are needed. 

Taking into account that u  is a uniform partition, we choose 

:=ix a ih  for    , , 1 1, ,i m k m k      .  

 
1 0 1 1

1

= < < < < =

                                              .

m k k

k k m

x x a x x x x b

x x

  

 

  

  
       (5) 

From the extended partition, a basis  
1

m

i
m i k

N
   

 of 

( , )mS u  can be defined in terms of divided differences:  

      1 1:= , , , ,
mm

i i m i i i i mN x x x x x x x    
    (6) 

where  
m


  stands for the truncated power of degree m . It is 

easy to prove that 

   = , 1,m

i m

x a
N x i m i k

h

 
      

 
  (7) 

where 

      
1

=0

11
:= 1 ,

!

m
m

m

m
x x

m





 
   

 
   (8) 

is the B-spline of the degree m  associated with the partition of 

the real line induced by the integer numbers and supported on 

the interval  0, 1m . The B-splines can be computed by the 

recurrence formula  

1 1

, 1, 1( ) = ( ) ( ) (1 ( )) ( ), 1,m m m

i i m i i m iN x x N x x N x m  

      (9) 

where  

 
,

,     if  ,
( ) =

0,       otherwise,

i

i i m

i m ii m

x x
x x

x xx











  (10) 

and 

 
10

1,     if  , ),
( ) :=

0,           otherwise.

i i

i

x x x
N x





  (11) 

It is well known that the set 1

={ }m k

i i mN 


 is a basis for 

( , )mS u  that satisfies interesting properties; for example, each 
m

iN  is positive on its support and 1

={ }m k

i i mN 


 form a partition of 

unity. 
 

On the other hand, as ( , )m mS u , the power basis 

functions 
=0{ }r m

rx  can be expressed in terms of B-splines 

through the relations  

 
1

( )

=

= ( ),  = 0, , ,
k

t t m

j j

j m

x N x t m




   (12) 

where t

j  are the symmetric polynomials given by  

 
   Sym 1,...,

=    for  = 0,1, , .
tt

j

t

j j m
t m

m
k

t


 

 
 
 

    (13) 

By substituting (12) into (2)  we get 

 

   
1 1

=0 = = =0

1

=

( ) = ( ) = ( ) =

                                                             ( ),

n k k n
t tm m

t j j t j j

t j m j m t

k
m

j j

j m

p x a N x a N x

d N x

 
 

 





 
 
 

   



  (14) 
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where  

 ( )

=0

.
n

t

j t j

t

d a    (15) 

C. Multivariate case 

Now, we derive the B-spline representation of a given 
multivariate polynomial  

  
1

1
1 2 1

1
=0 =0 N

1

, , ..., = ... ... = ,

nn
s

ii Is
s i i s I

s
i i I

s

p x x x a x x a x


     (16) 

where 1 2:= ( , , ..., )sI i i i , and 1 2N := ( , ,..., )sn n n . By 

substituting (12) for each 
tx , (16)  can be written as 

 

 

 
 

 
 

   
   

1 2

11
1 1

1 1
... 1

1 1 1
=0 =0 = =

1 1 1

11
1 1

1 1
... 1

1 1 1
= = =0 =0

1 1 1

1
1

= =
1 1

, , ...,

... ...

... ... .... ...

...

s

n kn k
s s

ii mm s s
i i sj j j j

s s s
i i j m j m

s s s

k nk n
s s

ii mms s
i i sj j j j

s s s
j m j m i i

s s s

k

j m j m
s s

p x x x

a N x N x

a N x N x

 

 



 



 



 





 
 
 
 



   

   

    
1

1
... 1

1 1
...

k
s

mm
s

j j sj j
s s

d N x N x





 

 (17) 

we express p  as  

 N

N

( ) = ( ) ( ),I I

I

p x d x N x


   (18) 

with the coefficients ( )Id x  given by  

 
   1

1
,..., ...

1 1 1
=0 =0

1

= ... .... .

nn
s

ii
s

j j i i j j
s s s

i i
s

d a      (19) 

The B-spline form of a multivariate polynomial p is defined 
by (17). The partial derivative of a polynomial in a particular 
direction can be found from the B-spline coefficients of the 
original polynomial on a box b x , the first partial derivative 

with respect to rx  of a polynomial ( )p x  in B-spline form is 

[14]   

     N
,1 r, 1,

N1 1 r, 1

( ) = ,

                                                                    1 ,

' r

r I I I
r

II n I
r

n
p d d N x

u u

r s x


   

 
  

  

b b b

b

 

(20) 

Where u represents a knot vector. Now, ( )'

rp b contains an 

enclosure of the range of the partial derivative of p  on b . In 

order, the B-spline curve interpolates the end control points and 
is tangent to the control polygon at its endpoints. One usually 
duplicate m+1 time the first and last knot in the knot vector 
(where m is the degree of the B-spline). We use the distribution 
as follows: 

1 1 0 1:= { = = = = = < < = = = = }.m m k k k ma u u u u u u u b     u  

(21) 

The distribution of equally spaced knot values as given in 
(21) is referred to as an open or clamped knot vector. Due to the 
modification in the distribution of knot values we use the 
modified form of   (13) as follows: 

           
   Sym 1,...,

= .
tt

j

j j m

m

t


 

 
 
 

                            (22) 

D. Range enclosure property 

The following Lemma describes the range enclosure 
property of the B-spline coefficients. 

Lemma 1. 

Let p be a polynomial of degree N  and let ( )p x denote the 

range of p on the given domain x . Then, for a patch ( )D x  of 

B-spline coefficients, it holds 

( ) ( ) [min ( ), max ( )].p D D D x x x x  

Obtaining the B-spline coefficients of multivariate 
polynomials by transforming the polynomial from power form 
to B-spline form, provides an enclosure of the range of the 
multivariate polynomial p on x . 

E. B-spline subdivision procedure 

Generally, the range enclosure obtained as per Lemma 1 is 
over-estimated and can be improved either by subdivision of 
domain, degree elevation of the B-spline or by increasing the 
number of B-spline segments. The subdivision is generally 
more efficient than degree elevation strategy [15], [16] or 
increasing the number of B-spline segments. Therefore, 
subdivision strategy is preferred over the latter two. A 

subdivision in the 
thr  direction (1 )r s   is a bisection 

perpendicular to this direction. Let 

 1 1= [ , ] ... , ] ... , ],r r s s   x x x x x x x   (23) 

be any subbox. Further, suppose that x  is bisected along the 
thr  component direction. Then, two subboxes Ax  and Bx  are 

generated as 

 
1 1

1 1

= [ , ] ... , ( )] ... , ],

= [ , ] ... ( ), ] ... , ].

A r r s s

B r r s s

m

m

   

   

x x x x x x x

x x x x x x x
  (24) 

So here, ( )rm x  denotes the midpoint of [ , ]r rx x . 

III. B-SPLINE KRAWCZYK OPERATOR ALGORITHM 

The proposed B-spline Krawczyk operator algorithm is 
based on interval Krawczyk pruning operator. This algorithm is 
introduced to reduce the number of iterations. Interval 
Krawczyk operator is given by 

( ) ( )( -x x )K y Mf y I MJ y    . 
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Where M is a nonsingular precondition real matrix, i.e., 

  
1

mid  xM J


 and J is the real Jacobian matrix computed 

over the interval x , y  is the midpoint of the interval x , i.e., 

 mid xy  . The computation of the interval Krawczyk 

operator needs the evaluation of the nonlinear polynomial 

equations at the midpoint, ( )f y and Jacobian matrix over the 

interval x . The proposed B-spline Krawczyk operator 
algorithm can be summarized as follows 

Step 1: This algorithm uses a domain box or interval, x and 

a cell structure  xcD , consisting of B-spline coefficients 

 xiD of polynomial systems on the domain x , where 

1, 2, , ,i n and n is the number of polynomial equations. 

Step 2: Then we compute the interval midpoint y as 

 mid xy  . 

Step 3: Next, we compute the polynomial function value at 

the midpoint for all polynomial functions   .if y  

Step 4: Using B-spline derivative approach compute 
derivatives of polynomial systems in all component directions 

and denote it as  interval value,   .xJ  

Step 5: Compute the determinant of    mid xJ if it is less 

than  , then generate two subboxes . Chose the subdivision 

direction along the longest direction of x and the subdivision 

point as the midpoint. Subdivide x into two subboxes 1x  and 

2x  such that 1 2x x x . Compute the B-spline coefficients for 

both the subboxes and store both these items   1 1,x xD and 

  2 2,x xD  into the list . 

Step 6: If the determinant of    mid xJ is greater than   

compute inverse midpoint preconditioner M as 

   
1

mid xM J


 . 

Step 7: Determine the value of B-spline Krawczyk operator, 

K as ( ) ( )( -x x )K y Mf y I MJ y     where I is unity 

matrix of size  s s and s is the number of variables. 

IV. ZERO FINDING ALGORITHM 

The algorithm based on B-spline Krawczyk operator for the 
computation of the roots of a system of nonlinear polynomial 
equations in s variables which lie within an s dimensional box. 
The algorithm can be summarized as follows. 

Step 1: A cell structure cA consisting of the polynomial 

coefficients array ia of the polynomial in power form, 

1, 2, , ,i n  and n is the number of polynomial functions. 

Step 2: A cell structure cN , consisting degree vector Ni , 

which contains the degree of each variable in a polynomial. 

Step 3: Then we compute the B-spline coefficients  xiD

of the nonlinear polynomials on the initial box  x . 

Step 4: Initialize a working list with the item 

  ,x xiD  and a solution list 
Sol

 to empty list. 

Step 5: Start iteration, if is empty go to step 14 otherwise 

pick the last item from , denote it as   ,b biD and delete 

this item entry from the list . 

Step 6: Check the feasibility of the box b , for the enclosure 

of roots. If    any min 0biD  else if 

   any max 0biD   then delete this box b as it does not 

enclose the roots and go to step 5 else go to step 7. 

Step 7: Accepting the new box b as root. If  width b   

then store b in the list 
Sol

 and go to step 5 else go to step 8. 

Step 8: Compute B-spline Krawczyk operator value K , 
using  B-spline Krawczyk operator algorithm. 

Step 9: Next compute the updated bound values as 

new
b b K . 

Step 10: Examine the validity of updated bound value. If 

new
b   then discard the item   ,b biD  and go to step 5 

else go to step 11. 

Step 11: Subdivision confirmation, if there is a reduction of 
variable bounds more than 20% in any of the variable direction, 

evaluated as      any width 0.8 width
new

b b   then go to 

step 12 else go to step 13. 

Step 12: Compute the B-spline coefficients over the new 

contracted bound box new
b  as  new

biD  and store item 

  ,
new new

b biD into the list . 

Step 13: Generate two items. Choose the subdivision 
direction along the longest direction of b and the subdivision 

point as the midpoint. Subdivide b into two subboxes 1b  and 

2b then enter both the items   1 1,b bD and   2 2,b bD  into 

the list and go to step 5. 

Step 14: Return all the roots found above. 

V. NUMERICAL TESTS 

The numerical computation is done on a PC Intel i3-370M 
2.40 GHz processor, 6 GB RAM, while the algorithms are 

implemented in MATLAB [17]. An accuracy 
0310  is 

prescribed for computing the set of roots in each test problem. 

We consider the two problems to test and compare the 
performance of B-spline Krawczyk operator (BKO) over the 
interval Krawczyk operator (IKO). The performance metrics 
are taken as the number of iterations and computational time (in 
seconds). Our MATLAB source code implementation of 
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interval Krawczyk operator based INTLAB [18] solver is made 
available at [http://bit.ly/37wcB4C] for all two test problems. 
The MATLAB source code for problem evaluation at roots is 
made available at [http://bit.ly/2UZNLYB] for the interested 
reader. 

EXAMPLE 1:  

 
This example is taken from [19], [20], the polynomial 

system is given by 

1 2 3 4

1 1 2 2 3 3 4 4

1 2 1 2 3 2 3 4 3 4 4 1

1 2 3 1 2 3 4 2 3 4 3 4 1 4 1 2

1 0,

0,

0,

0,

    

    

    

    

x x x x

x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x x x
 

 and the bounds on the variables are 

 2 0.95,1.05 ,x   3 2.65, 2.6 ,x     1 0.95,1.05 ,x 

 4 0.4, 0.37 .x   
 

The results are tabulated in Table I. 

TABLE I: Roots value and comparison of performance between BKO 

and IKO. 

 

Roots 

1
x  2

x  3
x  4

x  

1 1 -2.6180 -0.3820 

   

 Number of 

iterations 

Computation 

Time (Sec.) 

BKO 4 1.248 

IKO 6 1.336 

 

 

EXAMPLE 2:  

 
This example is taken from [2]. The system of polynomial 

equations is 

9 5 2 4

1 1 2 1 2 1 3

6 2 3

1 2 1 2 2 3

2 2

1 2

5 6 2 0

2 2 2 0

0.265625 0

   

   

  

x x x x x x x

x x x x x x

x x
 

and the bounds on the variables are  1 0.45, 0.5 ,x 

 2 0.2, 0.24 ,x   3 0, 0.03 .x 
 

The results are tabulated in Table II. 

 

 

 

TABLE II: Roots value and comparison of performance between BKO 

and IKO. 

Roots 

1
x  2

x  
3

x  

0.4670 0.2180 0 

   

 Number of 

iterations 

Computation 

Time (Sec.) 

BKO 4 0.728 

IKO 5 1.1648 

 

VI. CONCLUSION 

In this paper, we presented a novel method for finding all 
roots of a system of nonlinear polynomial equations in s 
variables which lie within an s dimensional box. We presented 
two examples to show the superiority of the B-spline Krawczyk 
operator. It is found in these examples that the proposed 
algorithm encloses the roots of the polynomial systems with the 
desired accuracy in the small number of iterations and 
computation time as compared to the interval Krawczyk 
operator.  
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