UNIVERSITY OF MUMBAI

Bachelor of Engineering

Mechanical Engineering

Third Year (Sem. V & VI) and Final Year (Sem. VII & VIII)

Revised Syllabus (REV-2012) w. e. f. Academic Year 2014-15 and 2015-2016 respectively

Under

FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)
Deans Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO’s) and give freedom to affiliated Institutes to add few (PEO’s) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner’s learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Semester based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner’s performance. Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande
Dean,
Faculty of Technology,
Member - Management Council, Senate, Academic Council
University of Mumbai, Mumbai
Chairman Preamble

Engineering education in India is expanding and is set to increase manifold. The major challenge in the current scenario is to ensure quality to the stakeholders along with expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating the philosophy of outcome based education in the process of curriculum development.

As the Chairman, Board of Studies in Mechanical Engineering of University of the Mumbai, I am happy to state here that, the Program Educational Objectives were finalized in a brainstorming session, which was attended by more than 20 members from different affiliated Institutes of the University. They are either Heads of Departments or their senior representatives from the Department of Mechanical Engineering. The Program Educational Objectives finalized for the undergraduate program in Mechanical Engineering are listed below;

1. To prepare the Learner with a sound foundation in the mathematical, scientific and engineering fundamentals.
2. To prepare the Learner to use modern tools effectively in order to solve real life problems.
3. To prepare the Learner for a successful career in Indian and Multinational Organisations and to excel in their Postgraduate studies.
4. To encourage and motivate the Learner in the art of self-learning.
5. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social responsibilities in the Learner’s thought process.

In addition to the above, 2 to 3 more program educational objectives of their own may be added by affiliated Institutes.

In addition to Program Educational Objectives, for each course of undergraduate program, objectives and expected outcomes from the point of view of a learner are also included in the curriculum to support the philosophy of outcome based education. I strongly believe that even a small step taken in the right direction will definitely help in providing quality education to the major stakeholders.

Dr. S. M. Khot
Chairman, Board of Studies in Mechanical Engineering, University of Mumbai
Program Structure for B E Mechanical Engineering
T. E. Mechanical - (Semester V)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Pract.</td>
</tr>
<tr>
<td>MEC501</td>
<td>I C Engines *</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MEC502</td>
<td>Mechanical Measurements and Control</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MEC503</td>
<td>Production Process-III &</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MEC504</td>
<td>Theory of Machines- II*</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MEC505</td>
<td>Heat Transfer *</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MEL5O1</td>
<td>Business Communication and Ethics #</td>
<td>-</td>
<td>2(^2+2)</td>
</tr>
</tbody>
</table>

Total | 20 | 14 | 20 | 7 | 27

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td>MEC501</td>
<td>I C Engines *</td>
<td>20</td>
</tr>
<tr>
<td>MEC502</td>
<td>Mechanical Measurements and Control</td>
<td>20</td>
</tr>
<tr>
<td>MEC503</td>
<td>Production Process-III &</td>
<td>20</td>
</tr>
<tr>
<td>MEC504</td>
<td>Theory of Machines- II*</td>
<td>20</td>
</tr>
<tr>
<td>MEC505</td>
<td>Heat Transfer *</td>
<td>20</td>
</tr>
<tr>
<td>MEL5O1</td>
<td>Business Communication and Ethics #</td>
<td>-</td>
</tr>
</tbody>
</table>

Total | -- | -- | 100 | 400 | -- | 175 | 75 | 750

* Theory for entire class to be conducted \# Common for all engineering programs
& Common with Automobile Engineering * Only ORAL examination based on term work and syllabus

T. E. Mechanical - (Semester VI)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Pract.</td>
</tr>
<tr>
<td>MEC601</td>
<td>Metrology and Quality Engineering</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MEC602</td>
<td>Machine Design I *</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MEC603</td>
<td>Mechanical Vibrations &</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MEC604</td>
<td>Thermal and Fluid Power Engineering &</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MEC605</td>
<td>Mechatronics</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MEC606</td>
<td>Finite Element Analysis *</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total | 22 | 12 | 22 | 6 | 28

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td>MEC601</td>
<td>Metrology and Quality Engineering</td>
<td>20</td>
</tr>
<tr>
<td>MEC602</td>
<td>Machine Design I *</td>
<td>20</td>
</tr>
<tr>
<td>MEC603</td>
<td>Mechanical Vibrations &</td>
<td>20</td>
</tr>
<tr>
<td>MEC604</td>
<td>Thermal and Fluid Power Engineering &</td>
<td>20</td>
</tr>
<tr>
<td>MEC605</td>
<td>Mechatronics</td>
<td>20</td>
</tr>
<tr>
<td>MEC606</td>
<td>Finite Element Analysis *</td>
<td>20</td>
</tr>
</tbody>
</table>

Total | -- | -- | 120 | 480 | -- | 150 | 75 | 825

* Common with Automobile Engineering * Only ORAL examination based on term work and syllabus
B. E. Mechanical-(Semester VII)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC701</td>
<td>Machine Design -II</td>
<td>Theory 4 Pract. 2</td>
<td>Theory 4 Pract. 1 Total 5</td>
</tr>
<tr>
<td>MEC702</td>
<td>CAD/CAM/CAE *</td>
<td>Theory 4 Pract. 2</td>
<td>Theory 4 Pract. 1 Total 5</td>
</tr>
<tr>
<td>MEC703</td>
<td>Mechanical Utility Systems</td>
<td>Theory 4 Pract. 2</td>
<td>Theory 4 Pract. 1 Total 5</td>
</tr>
<tr>
<td>MEC704</td>
<td>Production Planning and Control</td>
<td>Theory 4 Pract. 2</td>
<td>Theory 4 Pract. 1 Total 5</td>
</tr>
<tr>
<td>MEE701X</td>
<td>Elective- I</td>
<td>Theory 3 Pract. 6*</td>
<td>Theory 3 Total 3</td>
</tr>
<tr>
<td>MEP701</td>
<td>Project- I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Theory 19 Pract. 16</td>
<td>Theory 19 Pract. 8 Total 27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC701</td>
<td>Machine Design- II</td>
<td>Theory Test 1 20</td>
</tr>
<tr>
<td>MEC702</td>
<td>CAD/CAM/CAE *</td>
<td>Theory Test 1 20</td>
</tr>
<tr>
<td>MEC703</td>
<td>Mechanical Utility Systems</td>
<td>Theory Test 1 20</td>
</tr>
<tr>
<td>MEC704</td>
<td>Production Planning and Control</td>
<td>Theory Test 1 20</td>
</tr>
<tr>
<td>MEE701X</td>
<td>Elective- I</td>
<td>Theory Test 1 20</td>
</tr>
<tr>
<td>MEP701</td>
<td>Project- I</td>
<td>Theory Test 1 20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Theory 100 Pract. 400 Total 175 Pract. 75 Total 250</td>
</tr>
</tbody>
</table>

* Common with Automobile Engineering
* Only ORAL examination based on term work and syllabus

B. E. Mechanical-(Semester VIII)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC801</td>
<td>Design of Mechanical Systems</td>
<td>Theory 4 Pract. 2</td>
<td>Theory 4 Pract. 1 Total 5</td>
</tr>
<tr>
<td>MEC802</td>
<td>Industrial Engineering and Management</td>
<td>Theory 4 Pract. 2</td>
<td>Theory 4 Pract. 1 Total 5</td>
</tr>
<tr>
<td>MEC803</td>
<td>Refrigeration and Air Conditioning</td>
<td>Theory 4 Pract. 2</td>
<td>Theory 4 Pract. 1 Total 5</td>
</tr>
<tr>
<td>MEE802X</td>
<td>Elective- II</td>
<td>Theory 3 Pract. 6*</td>
<td>Theory 3 Total 3</td>
</tr>
<tr>
<td>MEP802</td>
<td>Project- II</td>
<td>Theory 12*</td>
<td>Theory 6 Total 6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Theory 15 Pract. 20</td>
<td>Theory 15 Pract. 10 Total 25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC801</td>
<td>Design of Mechanical Systems</td>
<td>Theory Test 1 20</td>
</tr>
<tr>
<td>MEC802</td>
<td>Industrial Engineering and Management</td>
<td>Theory Test 1 20</td>
</tr>
<tr>
<td>MEC803</td>
<td>Refrigeration and Air Conditioning</td>
<td>Theory Test 1 20</td>
</tr>
<tr>
<td>MEE802X</td>
<td>Elective- II</td>
<td>Theory Test 1 20</td>
</tr>
<tr>
<td>MEP802</td>
<td>Project- II</td>
<td>Theory Test 1 20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Theory 80 Pract. 320 Total 150 Pract. 150 Total 700</td>
</tr>
</tbody>
</table>

* Only ORAL examination based on term work and syllabus
indicates work load of Learner (Not faculty) in VII and VIII semester for Project
Project –I and II: Students groups and load of faculty per week

Project Groups: Students can form groups with minimum 2 (Two) and not more than 4 (Four)

Faculty Load: In semester VII 1/2 hour per week per project group
 In semester VIII 1 hour per week per project group
 Each faculty is permitted to take (guide) maximum 4 (Four) project groups.

<table>
<thead>
<tr>
<th>Course codes</th>
<th>Elective I</th>
<th>Course codes</th>
<th>Elective II</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEE7011</td>
<td>Product Life Cycle Management (PLM)</td>
<td>MEE8021</td>
<td>Micro Electro Mechanical Systems (MEMS)</td>
</tr>
<tr>
<td>MEE7012</td>
<td>Power Plant Engineering &</td>
<td>MEE8022</td>
<td>Renewable Energy Sources</td>
</tr>
<tr>
<td>MEE7013</td>
<td>Energy Management</td>
<td>MEE8023</td>
<td>Project Management &</td>
</tr>
<tr>
<td>MEE7014</td>
<td>Supply Chain Management &</td>
<td>MEE8024</td>
<td>Business Process Reengineering</td>
</tr>
<tr>
<td>MEE7015</td>
<td>Computational Fluid Dynamics &</td>
<td>MEE8025</td>
<td>Cryogenics</td>
</tr>
<tr>
<td>MEE7016</td>
<td>Advanced Turbo Machinery</td>
<td>MEE8026</td>
<td>Automobile Engineering</td>
</tr>
<tr>
<td>MEE7017</td>
<td>Piping Engineering</td>
<td>MEE8027</td>
<td>Process Equipment Design</td>
</tr>
<tr>
<td>MEE7018</td>
<td>Emission and Pollution Control</td>
<td>MEE8028</td>
<td>Alternative Fuels</td>
</tr>
<tr>
<td>MEE7019</td>
<td>Operations Research</td>
<td>MEE8029</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>MEE70110</td>
<td>Total Productive Maintenance (TPM)</td>
<td>MEE80210</td>
<td>World Class Manufacturing &</td>
</tr>
<tr>
<td>MEE70111</td>
<td>Robotics</td>
<td>MEE80211</td>
<td>Nanotechnology</td>
</tr>
<tr>
<td>MEE70112</td>
<td>Digital Prototyping for Product</td>
<td>MEE80212</td>
<td>Digital Prototyping for Product Design –II</td>
</tr>
<tr>
<td></td>
<td>Design –I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

& Common with Automobile Engineering
<table>
<thead>
<tr>
<th>Module</th>
<th>Course/Subject Name</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction</td>
<td>Heat engines; Internal and external combustion engines; Classification of I.C. Engines; Cycle of operations in four strokes and two-stroke IC engines and their comparative study; Scavenging and scavenging blowers, Air standard cycles and Fuel air cycles, Variable specific heat and its effects, Dissociation and other losses, Actual cycles, Deviation of actual engine cycle from ideal cycle</td>
<td>06</td>
</tr>
<tr>
<td>02</td>
<td>Spark Ignition Engines</td>
<td>A. Carburators and fuel injection system in S I Engines : Theory of carburtion, Simple carburator, Essential parts of modern carburator, Types of carburators, Types of fuel injection systems in S I engines, Continuous injection system, Timed injection system, Electronic Fuel Injection systems (EFIs), Advantages and disadvantages of SI engine fuel injection system</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Ignition Systems : Spark Plug and its requirements, Battery, Magneto, Electronic ignition systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Combustion : Combustion phenomenon in SI Engines, Ignition delay, Flame propagation, Pressure-Crank angle diagram, Abnormal combustion, Auto ignition, Detonation and Knocking, Factors affecting combustion and detonation, Types of combustion chambers</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Compression Ignition Engines</td>
<td>A. Fuel Injection Systems : Types i.e. Air injection systems, Airless/solid injection systems, Common rail, individual pump, distributor and unit injector etc, Injection pumps, Fuel injector, Types of nozzle, Electronically controlled unit fuel injection system, C I Engine Governors: necessity and characteristics</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Combustion : Combustion phenomenon in C I engines, Stages of combustion, Delay period, Knocking, Pressure-Crank angle diagram, Factors affecting combustion and knocking, Types of combustion chambers</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Engine lubrication : Types of lubricants and their properties, SAE rating of lubricants, Types of lubrication systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engine Cooling : Necessity of engine cooling, disadvantages of overcooling, Cooling systems and their comparison: Air cooling, Liquid cooling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supercharging/Turbo-charging : Objectives, Effects on power output and engine efficiency, Methods, Types, Limits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

&Common with Automobile Engineering

Objectives
1. Study of air standard and actual engine cycles.
2. Study of SI and CI engine components and processes involved
3. Study and analysis of engine performance characteristics and engine emissions

Outcomes: Learner will be able to…
1. Differentiate SI and CI engines
2. Identify and explain working of engines components/systems
3. Plot and analyze engine performance characteristic
4. Perform exhaust gas analysis and comment on adverse implications on environment
| 06 | Exhaust Emissions: Exhaust gas analysis and methods, necessity, constituents, Air pollution due to engine exhaust, Pollution control devices and EURO, BHARAT standards |
| 06 | Fuels: SI and CI engine fuels, Rating of fuels, Non conventional fuels: CNG, LPG, Bio-fuels, Hydrogen, Alcohol etc |
| 04 | Alternative Potential Engines: Stratified charge engine, Wankel engine, Free-piston engine, Stirling engine, VCR engine, Dual fuel engines, Multi fuel engines |
| 04 | Modern Trends in I C Engines |

List of Experiments

Part A: Study of physical systems in terms of constructional details and functions

1. 2 Stroke and 4 Stroke Engines
2. Carburetor.
3. Ignition system.
4. Fuel injection system.

Part B: Students shall perform at least 5 experiments from the list

1. Morse Test on petrol engine.
2. Speed Test on petrol or/and diesel engine.
3. Load Test on diesel engine (engines).
4. Heat Balance test on diesel or petrol engines.
5. Experimental determination of Air fuel ratio and volumetric efficiency of the engine
6. Exhaust Gas/Smoke analysis of S.I./C.I. engines
7. Effect of Supercharging on Performance Characteristics of an engine

Term Work

Term work shall consist of minimum 6 experiments from the list out of which 4 must be actual trials on IC Engines and 1 case study/report (in group of not more than 3 students) on latest trends/developments in IC Engines.

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiments) : 15 marks
- Case Study/Report : 05 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.
Practical/Oral examination

1. Practical examination shall be conducted in a group of not more than 5 students. Examination shall be based on actual trials performed during the semester. Students are expected to actually take reading and plot the performance characteristics and comment.
2. Examiners are expected to evaluate results of each group and conduct oral based on the same.
3. The distribution of marks for practical/oral examination shall be as follows:
 i. Practical performance ……. 15 marks
 ii. Oral ……. 10 marks
4. Students work along with evaluation report to be preserved till the next examination.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

1. Internal Combustion Engines, Willard W.Pulkrabek, Pearson Education.
2. Internal Combustion Engines, Shyam Agrawal, New Age International
3. Internal Combustion Engine, Mathur and Sharma
4. Internal Combustion Engines, Mohanty, Standard Book House
5. Internal Combustion Engine, Gills and Smith
6. Internal Combustion Engines Fundamentals, John B. Heywood
7. Internal Combustion Engines, Gupta H N, 2nd ed, PHI
10. Internal Combustion Engine, S.L. Beohar
12. Internal Combustion Engines, V.L. Maleeve
14. Internal Combustion Engine, Domkundwar
Objectives

1. To impart knowledge of architecture of the measurement system
2. To deliver working principle of mechanical measurement system
3. To study concept of mathematical modelling of the control system
4. To Analyse control system under different time domain

Outcomes: Learner should be able to…

1. Identify and select proper measuring instrument for specific application
2. Illustrate working principle of measuring instruments
3. Explain calibration methodology and error analysis related to measuring instruments
4. Mathematically model and analyze system/process for standard input responses

<table>
<thead>
<tr>
<th>Modules.</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 01 | 1.1 Significance of Mechanical Measurements, Classification of measuring instruments, generalized measurement system, types of inputs: Desired, interfering and modifying inputs.
1.2 Static characteristics: Static calibration, Linearity, Static Sensitivity, Accuracy, Static error, Precision, Reproducibility, Threshold, Resolution, Hysteresis, Drift, Span & Range etc.
1.3 Errors in measurement: Types of errors, Effect of component errors, Probable errors. | 08 |
| 02 | 2.1 Displacement Measurement: Transducers for displacement, displacement measurement, potentiometer, LVDT, Capacitance Types, Digital Transducers (optical encoder), Nozzle Flapper Transducer
2.2 Strain Measurement: Theory of Strain Gauges, gauge factor, temperature Compensation, Bridge circuit, orientation of strain gauges for force and torque, Strain gauge based load cells and torque sensors
2.3 Measurement of Angular Velocity: Tachometers, Tachogenerators, Digital tachometers and Stroboscopic Methods.
2.4 Acceleration Measurement, theory of accelerometer and vibrometers, practical accelerometers, strain gauge based and piezoelectric accelerometers. | 08 |
3.2 Flow Measurement: Bernoullis flowmeters, Ultrasonic Flowmeter, Magnetic flow meter, rotameter.
3.3 Temperature Measurement: Electrical methods of temperature measurement Resistance thermometers, Thermistors and thermocouples, Pyrometers.
3.3 Sensitivity analysis of sensor: influence of component variation, Signal conditioning: Amplifier, Conversion, Filtering, Impedance Buffering, Modulation / Demodulation, Linearization, Grounding and Isolation. | 08 |
04

4.1 Introduction to control systems. Classification of control system. Open loop and closed loop systems.
4.2 Mathematical modelling of control systems, concept of transfer function, Block diagram algebra.

05

5.1 Transient and steady state analysis of first and second order system. Time Domain specifications. Step response of second order system. Steady-state error, error coefficients, steady state analysis of different type of systems using step, ramp and parabolic inputs.

06

Stability analysis
6.1 Introduction to concepts of stability. The Routh criteria for stability.
6.2 Experimental determination of frequency response, Stability analysis using Root locus, Bode plot and Nyquist Plots.
6.3 State space modeling.
6.4 Process control systems, ON-OFF control. P-I-D Control.

List of Experiments

1. Calibration of Displacement sensors like LVDT, Potentiometers etc.
2. Calibration of Pressure Gauges
3. Calibration of Vacuum Gauges
4. Torque measurement using strain gauges
5. Calibration of tachometers
7. Experiments on feedback control systems and servomechanisms
8. System Identification of any one of the sensor
9. Experiment on frequency response system identification
10. Experiment on transient state response of a control system.
11. Experiment on design of PID controller for a system.

(Design based experiments shall be encouraged using standard National Instrument/ texas instrument/ dSPACE GmbH/ Arduino or any other platform)

Term Work

Term work shall consist of minimum 08 experiments (04 from the measurement group and 04 from the control group), assignments on each module.

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiments) : 10 marks
- Assignments : 10 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which, one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.
Practical/Oral examination

1. Experiment for the examination shall be based on the list of experiments mentioned in the term work.
2. The distribution of marks for practical/oral examination shall be as follows:
 iii. Practical performance …… 15 marks
 iv. Oral …… 10 marks
3. Evaluation of practical examination to be done based on the experiment performed and the output of the experiments during practical examination.
4. Students work along with evaluation report to be preserved till the next examination

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

7. Modern Control engineering: by K.Ogata, Prentice Hall
8. Control systems: Dhanesh Manik, Cengage Learning
10. Control system theory with engineering applications, Lysherski, Sergey E, Springer
11. Instrumentation and Control System, W. Bolton, Elsevier
14. Mechanical Measurements- S.P.Venkateshan, Ane books, India
16. Control System Engineering: Norman Nise, John Wiley and Sons
Course Code: MEC503
Course/Subject Name: Production Process - III
Credits: 4+1

& Common with Automobile Engineering

Objectives

1. To study sheet metal forming as well as mechanical behavior of stress system in metal forming processes.
2. To develop capability to design jigs and fixtures.
3. To give exposure to Non-traditional machining operations.
4. To study concepts regarding modern manufacturing techniques like rapid prototyping, rapid tooling, agile manufacturing technologies etc.

Outcome: Learner will be able to..

1. Demonstrate understanding of sheet metal forming and various stress systems involved in metal forming operations.
2. Design jigs and fixtures for a given applications.
3. Get knowledge about non-conventional machining operations and its application areas.
4. Illustrate advanced concepts such as rapid prototyping and Agile manufacturing.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction to High speed machines, special purpose machines, transfer line and other mass production machines. Types of automats and its tooling.</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>Sheet Metal Forming : Elementary treatment of press working, Operation on presses, Press devices Classification of presses, Constructional features of blanking, piercing, compound, combination, progressive, bending, forming and drawing dies, Load calculations, development of blanks, scrap strip layout, punches, selection of die sets, stock guides, strippers, pilots, stops etc. selection of presses, capacities and other details.</td>
<td>10</td>
</tr>
<tr>
<td>03</td>
<td>Design of Jigs and Fixtures: Need for jigs and fixtures, elements of Jigs and fixtures, principles of location, design of locating elements, locating pins support pins spring back, vee blocks, etc. principles of clamping simple hand operated clamps, like screw clamp, lever clamps and other types of clamps. Drill bushes-their types and applications indexing devices, auxiliary elements. Design of drill jigs like plate, leaf solid and box types for drilling combined with reaming, spot facing etc. design of milling fixtures such as plain, string, gang and indexing types. Design of turning fixtures.</td>
<td>12</td>
</tr>
<tr>
<td>04</td>
<td>Non-traditional Machining Ultrasonic Machining (USM), Abrasive Jet Machining (AJM),Water Jet Machining, Electrochemical Machining (ECM),Chemical Machining (CHM),Electrical Discharge Machining (EDM), Plasma Arc Machining (PAM), Laser Beam Machining (LBM), Electron Beam Machining (EBM), Arc cutting processes and Oxy fuel cutting process.</td>
<td>08</td>
</tr>
<tr>
<td>05</td>
<td>Plastics Injection Mold Design: General arrangement of an injection mold, Basic systems of the mold – Feeding system, cooling system and ejection systems, Concepts of three plate molds and tooling for moulding articles with undercuts, Concepts of split molds, hot runner systems – Their advantages and limitation over conventional systems. Basic concepts of mold standardization and innovative mold components.</td>
<td>08</td>
</tr>
</tbody>
</table>
Agile Manufacturing Technologies:
Flexible manufacturing systems.

Term Work

1. At least six assignments on concepts, Case studies and analysis based on the topics mentioned above.
2. Term work shall consist of minimum 6 assignments. The distribution of marks for term work shall be as follows

- Lab work (Case Studies): 10 marks
- Assignments: 10 marks
- Attendance: 05 marks

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

1. Mechanical Metallurgy, G E Dieter, ,McGraw Hill.
5. Introduction to Jigs and Tool design, HA Kempster, Butterworth Heinemann Ltd.
8. Agile Manufacturing, AGunasekharan, the 21st Century Competitive strategy, Elsevier Press,India.
Course Code: MEC504
Course/Subject Name: Theory of Machines-II &
Credits: 4+1

Common with Automobile Engineering

Objectives
1. To acquaint with working principles of clutches and its constructional details.
2. To study working and types of brakes and dynamometers.
3. To acquaint with working principles and applications of gyroscope and governors.
4. To demonstrate different types of gear trains and its applications.

Outcomes: Learner will be able to…
1. Apply the working principles of clutches and its constructional details.
2. Analyze working of brakes and dynamometers.
3. Demonstrate working mechanism of different types of governors.
4. Analyze and select gear trains.
5. Analyze gyroscopic effect on various applications

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1.1 Clutches: Requirements of Clutches, Types of Clutches and Clutch materials, Positive clutches, friction clutches, Friction Clutches - Analysis of frictional torque, power transmission .Power loss in Friction in single plate, multiple plate clutch, and cone clutch, Centrifugal Clutches - construction, working</td>
<td>08</td>
</tr>
</tbody>
</table>
| 02 | **2.1 Brakes:** Requirement of brake, Types of Brakes, Analysis of Block brakes - external and internal, Band brake-simple and differential, Band and block brake - simple and differential, Braking of vehicles - front wheels, rear wheels, all wheels on level and inclined roads,
2.2 Dynamometers - Absorption and transmission dynamometers, Study and analysis of absorption type dynamometer - Proney brake, Rope brake, dynamometers, Study and analysis of transmission type dynamometers - Belt transmission, epicyclical, torsion dynamometers, Froude hydraulic dynamometer | 08 |
| 03 | **3.1 Governors:** Comparison between governors and flywheel, Types - centrifugal governors, inertia governors,
3.2 Force analysis of gravity loaded governors - Watt, Porter, Proell, Force analysis of spring loaded governors - Hartnell, hartung, Wilson Hartnell, Force analysis of spring and gravity loaded governor, Performance characteristics of governors- stability, sensibility, isochronisms, Hunting, governor effort and governor power, coefficient of insensitiveness. | 08 |
| 04 | **4.1 Gyroscope:** Introduction - Gyroscopic couple and its effect on spinning bodies, Gyroscopic effect on naval ships during steering, pitching and rolling., Ship stabilization with gyroscopic effect
Two wheeler and four wheeler on curved path - effect of gyroscopic and centrifugal couples, maximum permissible speeds on curve paths, Gyroscopic effect due to lateral misalignment of rigid disc mounted on shaft | 08 |
| 05 | **5.1 Gear Trains:** Kinematics and dynamic analysis of - simple gear trains, compound gear trains, reverted gear trains, epi-cyclic gear trains with spur or bevel gear combination,
5.2 Transmissions: Necessity of gear box, Sliding mesh, Constant mesh, Synchromesh and epicyclic gear box, | 08 |
List of Experiments

1. Study of Clutches
2. Study of Brakes
3. Experiments on Dynamometers - Rope Brake Dynamometer, Torsion Dynamometer
4. Experiments on Governors - Proell Governor, Hartnell Governor,
5. Experiments on Gyroscope
6. Study of power transmission system in automobile
7. At least two numerical simulations using C++/MATLAB based on systems discussed in syllabus

Term Work

Term work shall consist of experiments listed above and at least 3 assignments consisting numerical from each module.

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiments) : 10 marks
- Assignments : 10 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References

1. Theory of Machines - Thomas Bevan - C. B. S. Publishers
6. Theory of Machines - W. G. Green – Bluckie & Sons Ltd.
7. Mechanics & Dynamics of Machinery - J. Srinivas, Scitech
9. Essential MATLAB for Engineers and Scientist - Brian D. Hahn, Daniel Valentine,
Course Code | **Course/Subject Name** | **Credits**
---|---|---
MEC505 | Heat Transfer & Common with Automobile Engineering | 4+1

Objectives
1. Study and analysis of basic heat transfer concepts applicable for steady state and transient conditions
2. Study mathematical modeling and designing concepts of heat exchangers

Outcomes: Learner should be able to…
1. Identify & explain the three modes of heat transfer (conduction, convection and radiation).
2. Develop mathematical model for each mode of heat transfer
3. Demonstrate and explain mechanism of boiling and condensation
4. Design and analyze different heat exchangers

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| **01** | **Introduction**
Typical heat transfer situations, Modes of heat transfer, heat transfer parameters, various thermo physical properties | 02 |
| **02** | **Conduction**
Fourier’s law of heat conduction, thermal conductivity, differential equation of heat conduction with heat generation in unsteady state in the Cartesian coordinate system, Boundary and initial conditions, Solution to three dimensional steady heat conduction problems, Steady heat conduction in plane walls, composite walls, Concept of thermal resistance and thermal resistance network, Heat conduction in cylinders and spheres, Differential equation of heat conduction in cylindrical coordinates, Conduction through Cylindrical and Spherical composite walls (Derivation NOT INCLUDED for Spherical walls), Critical thickness/radius of insulation and its importance. | 10 |
| **03** | **Extended Surfaces**
Heat transfer from finned surfaces, Types of fins, Fin equation for rectangular fin and its solution, Fin efficiency, Fin effectiveness
Transient Heat Conduction
Lumped system analysis, One dimensional transient problems analytical solutions, One dimensional Heisler charts
Numerical Methods in Conduction
Importance of numerical methods, Finite difference formulation of one dimensional steady heat conduction equations | 08 |
| **04** | **Convection**
Physical mechanism of convection, Natural and Forced convection, Velocity/hydrodynamic and Thermal boundary layer, Velocity and temperature profile, Differential equation of heat convection, Laminar flow heat transfer in circular pipe, constant heat flux and constant wall temperature, thermal entrance region, Turbulent flow heat transfer in circular pipes, Pipes of other cross sections, Heat transfer in laminar and turbulent flow over a flat plate, Heat pipe introduction and applications, Principles of dimensional analysis and its application in convective heat transfer, Empirical correlations for convection, Physical significance of various dimensionless numbers useful in natural and forced convection | 10 |
| 05 | **Radiation**
Thermal radiation, Blackbody radiation, Radiation intensity, Radiative properties, Basic laws of radiation (Plank’s law, Kirchoff’s law, Stefan-Boltzman law, Wien’s displacement law, Lambert’s cosine law, Radiation exchange between black surfaces, Shape factor, Radiation exchange between gray surfaces, Radiosity-Irradiation method, Radiation shield and the radiation effect | 08 |
| 06 | **Boiling and Condensation**
Boiling heat transfer, Pool boiling, Flow boiling, Condensation heat transfer, Film condensation, Drop wise condensation
Heat Exchangers
Types of heat exchangers, Overall heat transfer coefficient, Analysis of heat exchangers, LMTD method, Effectiveness-NTU method, Correction factor and effectiveness of heat exchangers | 10 |

List of Experiments

1. Thermal conductivity of metal bar/composite wall/liquid/Insulating Material
2. Determination of contact resistance
3. Effect of area on Heat transfer
4. Radial heat conduction
5. Determination of fin efficiency and fin effectiveness
6. Unsteady state heat transfer
7. Heat pipe
8. Natural and Forced convection for flow over flat plate/through a circular pipe
9. Comparison of Overall heat transfer coefficient and effectiveness for double pipe/plate type/shell & tube heat exchanger
10. Determination of emissivity of a grey surface

Term Work

Term work shall consist of minimum 7 experiments from the list, 3 assignments containing numerical based on modes of heat transfer and One Assignment based on live problem relevant to heat exchanger analysis.

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiments): **10 marks**
- Numerical Assignments: **05 marks**
- Live problem assignment: **05 Marks**
- Attendance (Theory and Practical): **05 marks**

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.
Oral examination

1. Oral examination shall be conducted based on term work and syllabus content
2. Examiners are expected to give small task or ask questions either to evaluate understanding of basic fundamentals or to evaluate their capability of applying basic theory to practical applications.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

2. Fundamentals of Heat and Mass Transfer, F. P. Incropera and D. P. De Witt, Wiley India
7. Engineering Heat and Mass Transfer, Mahesh M Rathore, Laxmi Publication
15. Heat Transfer, Y V C Rao, University Press
17. Elements of Heat Transfer, Jakole and Hawkins
20. Engineering Heat Transfer, Shao Ti Hsu
22. Heat Transfer, Ghosdastidar, Oxford University Press
Course Code: MEL501
Course/Subject Name: Business Communication & Ethics &

Credits: 2

& Common with All Engineering Programs

Pre-requisite
- FEC206 Communication Skills

Objectives
1. To inculcate in students professional and ethical attitude, effective communication skills, teamwork, skills, multidisciplinary approach and an ability to understand engineer’s social responsibilities.
2. To provide students with an academic environment where they will be aware of the excellence, leadership and lifelong learning needed for a successful professional career.
3. To inculcate professional ethics and codes of professional practice
4. To prepare students for successful careers that meets the global Industrial and Corporate requirement’ provide an environment for students to work on Multidisciplinary projects as part of different teams to enhance their team building capabilities like leadership, motivation, teamwork etc.

Outcomes:
A learner will be able to …..

1. communicate effectively in both verbal and written form and demonstrate knowledge of professional and ethical responsibilities
2. Participate and succeed in Campus placements and competitive examinations like GATE, CET.
4. Have education necessary for understanding the impact of engineering solutions on Society and demonstrate awareness of contemporary issues.

<table>
<thead>
<tr>
<th>Module</th>
<th>Unit No.</th>
<th>Topics</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>Report Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>Objectives of report writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>Language and Style in a report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>Types of reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>Formats of reports: Memo, letter, project and survey based</td>
<td>07</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>Technical Proposals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>Objective of technical proposals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>Parts of proposal</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>Introduction to Interpersonal Skills</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>Emotional Intelligence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>Leadership</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>Team Buliding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Assertiveness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>Conflict Resolution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>Negotiation Skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>Motivation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>Time Management</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>Meetings and Documentation</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Strategies for conducting effective meetings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>Notice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>Agenda</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>Minutes of the meeting</td>
<td></td>
</tr>
</tbody>
</table>
List of Assignments
1. Report Writing (Synopsis or the first draft of the Report)
2. Technical Proposal (Group activity, document of the proposal)
3. Interpersonal Skills (Group activity and Role play)
4. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
5. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
6. Corporate ethics and etiquettes (Case study, Role play)
7. Cover Letter and Resume
8. Printout of the PowerPoint presentation

Term Work
Term work shall consist of all assignments from the list.

The distribution of marks for term work shall be as follows:
- Assignments: 20 marks
- Project Report Presentation: 15 marks
- Group Discussion: 10 marks
- Attendance: 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of work assigned and minimum passing in the term work.

References
10. Dr. K. Alex, “Soft Skills”, S Chand and Company
11. Dr.KAlex, “SoftSkills”, S Chand and Company
Objectives
1. To study the fundamentals of modern quality concepts and statistical techniques.
2. To study fundamentals of inspection methods and systems.
3. To acquaint with operation of precision measurement tools and equipment’s.

Outcomes: Learner will be able to…
1. Apply inspection gauge and checking systems.
2. Demonstrate the understanding of purpose of critical dimensions in manufacturing.
3. Analyse simple parts for dimensional accuracy and functionality.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1.1 Introduction to Metrology, Fundamental principles and definitions, measurement standards / primary and tertiary standards, distinction between precision and accuracy. 1.2 Limits, fits and tolerances, Tolerance grades, Types of fits, IS919, GO and NO GO gauges- Taylor’s principle, design of GO and NO GO gauges, filler gauges, plug gauges and snap gauges.</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>2.1 Comparators: Constructional features and operation of mechanical, optical, electrical/electronics and pneumatic comparators, advantages, limitations and field of applications. 2.2 Principles of interference, concept of flatness, flatness testing, optical flats, optical interferometer and laser interferometer. 2.3 Surface texture measurement: importance of surface conditions, roughness and waviness, surface roughness standards specifying surface roughness parameters- Ra, Ry, Rz, RMS value etc., surface roughness measuring instruments – Tomlinson and Taylor Hobson versions, surface roughness symbols.</td>
<td>09</td>
</tr>
<tr>
<td>03</td>
<td>3.1 Screw Thread measurement: Two wire and three wire methods, floating carriage micrometer. 3.2 Gear measurement: Gear tooth comparator, Master gears, measurement using rollers and Parkinson’s Tester. 3.3 Special measuring Equipments: Principles of measurement using Tool Maker’s microscope, profile projector & 3D coordinate measuring machine.</td>
<td>09</td>
</tr>
<tr>
<td>04</td>
<td>Quality Control Introduction, definition and concept of quality & quality control, set up policy and objectives of quality control, quality of design and quality of conformance, compromise between quality & cost, quality cost and planning for quality.</td>
<td>05</td>
</tr>
<tr>
<td>05</td>
<td>SQC and SQC tools Importance statistical methods in QC, measurement of statistical control variables and attributes, pie charts, bar charts/ histograms, scatter diagrams, pareto chart, GANT charts, control charts, X chart, X bar charts, R charts, P charts, np charts their preparation, analysis and applications. Elementary treatment on modern SQC tools.</td>
<td>06</td>
</tr>
<tr>
<td>06</td>
<td>Sampling Techniques Sampling inspection and basic concepts, OC curves, consumer & producer risk, single & double sampling plans and use of sampling tables.</td>
<td>03</td>
</tr>
</tbody>
</table>
List of Experiments

1. Use of comparators.
2. Thread measurement.
3. Gear measurement.
4. Use of Profile projectors.
5. Use of linear and angular measuring instruments.

Term Work

Term work shall consist of minimum 5 experiments from the list and presented with inferences and one assignment on each module

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiments) : 10 marks
- Assignments : 10 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Practical/Oral examination

1. Experiment for the examination shall be based on the list of experiments mentioned in the term work.
2. The distribution of marks for practical/oral examination shall be as follows:
 i. Practical performance: 15 marks
 ii. Oral: 10 marks
3. Evaluation of practical examination to be done based on the experiment performed and the output of the experiments during practical examination.
4. Students work along with evaluation report to be preserved till the next examination

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References

7. *Statistical Quality control*, R.C. Gupta
Course Code: MEC602
Course/Subject Name: Machine Design-I & Common with Automobile Engineering
Credits: 4+1

Objectives:
1. To study basic principles of machine design
2. To acquaint with the concepts of strength design related to various components.
3. To familiarize with use of design data books & various codes of practice.
4. To make conversant with preparation of working drawings based on designs.

Outcomes: Learner will be able to…
1. Demonstrate understanding of various design considerations
2. Apply basic principles of machine design
3. Design machine elements on the basis of strength concept
4. Use design data books and various standard codes of practices.
5. Acquire skill in preparing production drawings pertaining to various designs.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Mechanical Engineering Design, Design methods, Aesthetic and Ergonomics consideration in design Material properties and their uses in design Manufacturing consideration in design Design considerations of casting and forging Basic principles of Machine Design, Modes of failures, Factor of safety, Design stresses, Principal stresses and strains, Theories of failures Standards, I. S. codes, Preferred Series and Numbers.</td>
<td>06</td>
</tr>
<tr>
<td>02</td>
<td>Curved Beams: Assumptions made in the analysis of curved beams. Design of curved beams: Bending stresses in curved beams, such as crane hook, C-frame, etc. Thick cylinders: Design of thick cylinders subjected to an internal pressure using Lamé’s equation.</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>Design against static Loads: Cotter joint, knuckle joint, Turn Buckle Bolted and welded joints under eccentric loading. Power Screw - Screw Presses, C- Clamps along with the Frame, Screw Jack</td>
<td>12</td>
</tr>
<tr>
<td>04</td>
<td>Design against Fluctuating Loads: Variables stresses, reversed, repeated, fluctuating stresses Fatigue Failure: Static and fatigue stress concentration factors Endurance limit - estimation of endurance limit Design for finite and infinite life, Soderberg and Goodman design criteria, Fatigue design under combined stresses</td>
<td>06</td>
</tr>
<tr>
<td>05</td>
<td>Design of shaft - power transmitting, power distribution shafts Module (excluding crank shaft) under static and fatigue criteria. Keys - Types of Keys and their selection based on shafting condition. Couplings- Classification of coupling. Design of Split muf couplings, Flange couplings, Bush pin flexible couplings</td>
<td>11</td>
</tr>
<tr>
<td>06</td>
<td>Design of Springs: Helical compression, tension springs under static and variable loads, Leaf springs.</td>
<td>07</td>
</tr>
</tbody>
</table>
List of Assignments
Design exercises in the form of design calculations with sketches and or drawings on following machine system
1. Knuckle joint,
2. Turn Buckle
3. Screw Jack
4. Flexible flange couplings

Term Work
Term work shall consist of
A. Minimum 3 design exercises from the list which may include computer aided drawing on A3 size sheets
B. Stress analysis of any machine element mentioned in the syllabus using any application software and programming language

The distribution of marks for term work shall be as follows:
- Part A : 15 marks
- Part B : 05 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

NOTE:
Use of standard design data books like PSG Data Book, Design Data by Mahadevan is permitted at the examination and shall be supplied by the college.
References
6. Recommended Data Books - PSG, K. Mahadevan
7. Machine Design - Reshetov - Mir Publication
12. Design of Machine Elements - V.M. Faires
Course Code Course/Subject Name Credits
MEC603 Mechanical Vibration 4+1
& Common with Automobile Engineering

Objectives
1. To study basic concepts of vibration analysis
2. To acquaint with the principles of vibration measuring instruments
3. To study balancing of mechanical systems

Outcomes: Learner will be able to…
1. Develop mathematical model to represent dynamic system
2. Estimate natural frequency of mechanical element/system
3. Analyze vibratory response of mechanical element/system
4. Estimate the parameters of vibration isolation system

<table>
<thead>
<tr>
<th>Modules</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
</table>
| 01 | **1.1 Basic Concepts of Vibration**
Vibration and oscillation, causes and effects of vibrations, Vibration parameters – spring, mass, damper, Damper models, Motion – periodic, non periodic, harmonic, non- harmonic, Degree of freedom, static equilibrium position, Vibration classification, Steps involved in vibration analysis.
1.2 Free Undamped Single Degree of Freedom Vibration System
Longitudinal, transverse, torsional vibration system, Methods for formulation of differential equations by Newton, Energy, Lagrangian and Rayleigh’s Method, | 08 |
| 02 | **2.1 Free Damped Single Degree of Freedom Vibration System**
Viscous damped system – under damped, critically damped, over damped; Logarithmic decrement; Coulomb’s damping; Combined viscous and coulomb’s damping.
2.2 Equivalent Single Degree of Freedom Vibration System
Conversion of multi-springs, multi masses, multi – dampers into a single spring and damper with linear or rotational co-ordinate system | 08 |
| 03 | **3.1 Free Undamped Multi Degree of Freedom Vibration System**
Eigen values and Eigen vectors for linear system and torsional two degree of freedom; Holzer method for linear and torsional unbranched system;
Two rotors, Three rotors and geared system;
Dunkerley’s and Rayleigh’s method for transverse vibratory system | 09 |
| 04 | **4.1 Forced Single Degree of Freedom Vibratory System**
Analysis of linear and torsional systems subjected to harmonic force excitation and harmonic motion excitation (excluding elastic damper)
4.2 Vibration Isolation and Transmissibility
Force Transmissibility, Motion Transmissibility Typical isolators & Mounts
4.3 Rotor Dynamics:
Critical speed of single rotor, undamped and damped. | 09 |
| 05 | **5.1 Vibration Measuring Instruments:**
Principle of seismic instruments, vibrometer, accelerometer - undamped, damped
5.2 Introduction to Conditioning Monitoring and Fault Diagnosis:
At least two case studies in detail based on Conditioning Monitoring and Fault Diagnosis. | 06 |
List of Experiments
1. Experimental prediction of natural frequency of compound pendulum, prediction of equivalent simple pendulum system.
2. Experimental prediction of natural frequency for longitudinal vibrations of helical springs, and springs in series and parallel.
3. Experimental prediction of natural frequencies, and nodal points for single rotor and two-rotor vibratory system, and comparison with theoretical results.
4. Experimental and theoretical investigation of whirling of shaft (i.e., comparison of experimental and theoretical natural frequency and justification of discrepancy between experiment and theory).
5. Experimental investigation of viscous and coulomb damping, prediction of system parameter (spring stiffness, damping coefficient) from damped oscillations.
6. Experimental and theoretical investigation of frequency response of mechanical system, and comparing both and justification of discrepancy between theory and experiments.
7. Experiments on distributed parameter system: Transverse vibrations of beam (Dunkerley’s Rule Expt.)
8. Experimental balancing of single and multi-rotor system.
9. Introduction to FFT analyzer, and prediction of spectral response of vibrating machine from workshop.
10. Experiments on vibration isolation system and prediction of force transmissibility, motion transmissibility of system.
11. Vibration analysis of mechanical system using MATLAB.

Term Work
Term work shall consist of minimum 8 experiments from the list and one assignment on each module containing at least 5 numerical.

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiments) : 10 marks
- Assignments : 10 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Oral examination
1. Oral examination shall be conducted based on term work and syllabus content.
2. Examiners are expected to give small task or ask questions either to evaluate understanding of basic fundamentals or to evaluate their capability of applying basic theory to practical applications.
Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
1. Mechanical Vibrations 4th ed- S. S. Rao - *Pearson Education*
2. Mechanical Vibrations - G. K. Grover
8. Mechanical Vibrations - Den; Chambil, Hinckle
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course/Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC604</td>
<td>Thermal and Fluid Power Engineering & Automobile Engineering</td>
<td>4+1</td>
</tr>
</tbody>
</table>

Objectives

1. To study boilers, boiler mountings and accessories
2. To study utilization of thermal and hydraulic energy
3. To study gas turbine and its applications

Outcomes: Learner will be able to...

1. Identify utilities of thermal and hydraulic energy
2. Differentiate impulse and reaction turbines
3. Analyze performance of turbines

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Steam Generators
Fire tube and Water tube boiler, Low pressure and high pressure boilers, once through boiler, examples, and important features of HP boilers, Mountings and accessories. Layout of a modern HP boiler. Equivalent evaporation of boilers. Boiler performance. Boiler efficiency</td>
<td>08</td>
</tr>
<tr>
<td>02</td>
<td>Steam Nozzle and Turbines
Flow through steam nozzle- velocity at exit and condition for maximum discharge, nozzle efficiency
Steam Turbine- Basic of steam turbine, Classification, compounding of turbine, Impulse turbine – velocity diagram. Condition for max efficiency. Reaction turbine - velocity diagram, degree of reaction, Parson's turbine. Condition for maximum efficiency</td>
<td>10</td>
</tr>
<tr>
<td>03</td>
<td>Impact of Jets and Water Turbines
Impact of jet on flat and curved plates
Types of hydro turbines - impulse and reaction, definition of various turbine parameters like gross head, discharge, work done, input power, output power, efficiencies etc., Eulers' equation applied to a turbine, turbine velocities and velocity triangles, expression for work done.
Pelton Turbine: Components of Pelton turbine, definition of design parameters like speed ratio, jet ratio, and estimation of various parameters like head, discharge, and efficiency etc., determination of number of buckets.
Reaction Turbines: Types of reaction turbines - inward and outward flow, radial mixed and axial; elements of the turbine, estimation of various parameters.</td>
<td>10</td>
</tr>
<tr>
<td>04</td>
<td>Similarity relations in turbines, definition of unit quantities and specific quantities, selection of turbines. Prediction of results of prototypes from the model test.
Cavitations in turbines - causes, effects and remedies, Thoma's cavitations parameter G. Use of G v/s specific speed graphs. Determination of safe height of installation for the turbine. Characteristics of turbines, governing of turbines.</td>
<td>06</td>
</tr>
</tbody>
</table>
Gas Turbines
Applications of gas turbine, Actual Brayton cycle, open and closed cycle gas turbine, methods to improve efficiency and specific output, open cycle with intercooling, reheat, and regeneration. Effect of operating variable on thermal efficiency and work ratio.

Jet Propulsion Engines
Classification of jet propulsion engines, Thrust, Thrust power, Propulsive efficiency and thermal efficiency, Afterburner, Introduction to Turbojet, Turbofan, Ram jet, Turboprop and Rocket engine

List of Experiments
1. Study/Demonstration of Boilers
2. Study/Demonstration of Boiler mountings and accessories
3. Study of Steam Turbine
4. Trial on Impulse turbine
5. Trial on reaction turbine
6. Study of gas turbines
7. Study of Jet propulsion engines
8. Visit to Thermal Power Plant/Hydroelectric Power Plant/Gas Turbine Power Plant

Term Work
Term work shall consist of minimum 6 experiments from the list, 3 assignments containing numerical based on maximum contents of the syllabus and a visit report.

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiments) : 10 marks
- Assignments : 05 marks
- Visit report: 05 Marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References

1. Practical Boiler Operation Engineering and Power Plant, A R Mallick, 3rd ed, PHI Learning
4. Turbines, Compressors & Fans, S M Yahya, TMH
5. Thermal Engineering, R K. Rajput, Laxmi Publication
6. Steam and gas turbine, R Yadav
7. Fluid Mechanics and Hydraulic Machinery, Modi and Seth, Standard Book House
8. Hydraulic Machinery, Jagdish Lal
9. Hydraulic Machines, Vasandani
11. Fluid Mechanics and Hydraulic Machines, Gupta, Pearson Education
14. Hydraulic Turbines - Nechleba
Course Code | Course/Subject Name | Credits
---|---|---
MEC605 | Mechatronics | 4+1

Objectives
1. To present architecture of the mechatronics system
2. To study various actuators applicable to Mechatronics system
3. To study interfacing of the electromechanical devices.

Outcomes: Learner will be able to…
1. Identify the suitable sensor and actuator for a mechatronics system
2. Develop the skill required for interfacing the electromechanical system
3. Indigenously design and develop a mechatronic system

<table>
<thead>
<tr>
<th>Modules</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1.1 Introduction to Mechatronics.
Key element of mechatronics. mechatronics systems in factory, home and business applications. Basic Components of mechatronics systems. Mechatronics Design process, objectives, advantages of mechatronics</td>
<td>05</td>
</tr>
<tr>
<td>03</td>
<td>Actuators.
3.1 Pneumatic and Hydraulic actuating systems
Components of pneumatic and hydraulic systems, pumps, compressor, filter, control valves, pressure regulation, relief valves, accumulator.
3.2 Harmonic drive, Comb drive.
3.3 Piezoelectric drives.
3.4 Selection of actuator</td>
<td>08</td>
</tr>
<tr>
<td>04</td>
<td>Development of circuits for industrial automation.
4.1 Electro-pneumatic systems, Electro-hydraulic system, hydro-pneumatic system, Development of circuits for Industrial automation.
4.2 Programmable Logic Controller (PLC) in automation: Basic structure, I/O processing. Ladder logic diagram, PLC for industrial process control, Selection of PLC.</td>
<td>08</td>
</tr>
<tr>
<td>05</td>
<td>5.1 System Interfacing and Data Acquisition:
Data Acquisition systems (DAQs), data loggers, supervisory control and data acquisition, interfacing requirements, buffers, handshaking, polling and interrupt, digital communication, parallel communication, serial communication interface, universal asynchronous receiver and transmitter (UART), peripheral interface device (PIA), analog interfacing, Component interconnection and impedance matching, interfacing sensors and motor drives with microcomputer system.</td>
<td>10</td>
</tr>
<tr>
<td>06</td>
<td>6.1 Mechatronics case studies:
Autonomous Mobile Root, Wireless Surveillance Balloon, Fire Fighting robots, Cantilever beam vibration control using piezo sensors and actuators, Car engine management, pick and place robot, automatic camera, CNC machine</td>
<td>09</td>
</tr>
</tbody>
</table>
List of Experiments
1. Study of basic principles of sensing and actuation techniques used in Mechatronics systems
2. Study of Electro-pneumatic Logic Trainer kit, and experiments on Electro-pneumatic circuits
3. Study of Electro-hydraulic Logic Trainer kit, and experiments on Electro-hydraulic circuits
4. Experiments on Ladder programming for Mechatronics system (e.g. bottle filling plant)
5. Experiments on interfacing of mechanical system
6. Experiment based on waveform generation, interfacing and control of motors etc.
7. System Identification of any one of the actuator
8. Experimental Identification by frequency response approach of Mechanical, Electrical, Chemical system
9. Development of transfer function based on experimentally identified data, Stability analysis of predicted transfer function, and PID tuning and implementation on experimental setup
10. Experimental identification of mechanisms such as flexural based systems etc.

(Design based experiments shall be encouraged using standard National Instrument/ texas instrument/ dSPACEGmbH/ Arduino or any other platform)

Note: Error analysis is recommended.

Course Project
In course project students shall integrate and apply the knowledge gained during the course. The projects shall be developed by team of maximum four students. Further, course project shall demonstrate design, setup, and implementation of a simple mechatronics system.

Term Work
Term work shall consist of minimum 6 experiments from the list, one assignment on first three modules, one each on module 4 and module 5 respectively and a report on course project

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiments) : 10 marks
- Assignments : 05 marks
- Course project: 05 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.
Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3).
4. Total four questions need to be solved.

References

1. Mechatronics, Kenji Uchino and Jayne R. Giniewicz, publication: Marcel Dekker, Inc.
6. Mechatronics - Electromechanics and Control Mechanics, Mill Springer-Verlag
10. Introduction to Mechatronics, AppuKattan K.K., OXFORD Higher Education
11. Pneumatic Circuits and Low Cost Automation: by Fawcett J.R.
12. The Art of Electronics, Horowitz and Hill Cambridge, University Press
17. Understanding Electro-Mechanical Engineering - An Introduction to Mechatronics, Kam IEEE
19. Mechatronics, A. Smaili, F. Mrad, OXFORD Higher Education.
21. Industrial Hydraulics: Pippenger
22. Vickers Manual on Hydraulics
24. Pneumatic Applications: Deppert Warner & Stoll Kurt
25. Mechanization by Pneumatic Control: Vol. 1 & 2 Deppert Warner & Stoll Kurt
26. Hydraulics and Pneumatics for Production: Stewart
27. Hydraulic Valves and Controls: Pippenger
28. Fundamentals of pneumatics: Festo series
31. Mechatronics, HMT
32. System Identification: Theory for the User (2nd Edition), Lennart Ljung
33. Design with Microprocessors for Mechanical Engineers, Stiffler McGraw-Hill
MEC606 Finite Element Analysis &

Objectives
1. To introduce the concepts of Mathematical Modeling of Engineering Problems.
2. To study the applicability of FEM to a range of Engineering Problems.
3. To acquaint with applications of numerical techniques for solving problems.

Outcomes: Learner will be able to…
1. Solve ordinary and partial differential equations using the Galerkin method.
2. Develop the finite element equations to model engineering problems governed by 2nd order partial differential equations.
3. Apply the basic finite element formulation techniques to solve engineering problems.
4. Use commercial FEA software, to solve problems related to mechanical engineering.

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 01 | **Introduction**
| | 1.1 Introductory Concepts: Introduction to FEM, Historical Background, General FEM procedure. Applications of FEM in various fields. Advantages and disadvantages of FEM.
| | 1.2 Mathematical Modeling of field problems in Engineering, Governing Equations, Differential Equations in different fields.
| | 1.3 Approximate solution of differential equations-- Weighted residual techniques, Least squares, Galerkin methods, Boundary Value problems. | 06 |
| 02 | **FEA Procedure**
| | 2.1 Discrete and continuous models, Weighted Residual Methods – Ritz Technique – Basic concepts of the Finite Element Method.
| | 2.2 Definitions of various terms used in FEM like element, order of the element, internal and external node/s, degree of freedom, primary and secondary variables, boundary conditions.
| 03 | **One-Dimensional Problems**
| | 3.2 Assembly of Matrices - solution of problems in one dimensional structural analysis, heat transfer and fluid flow (Stepped and Taper Bars, Fluid Network, Spring-Cart systems).
| | 3.3 Analysis of Plane Trusses, Analysis of Beams.
| | 3.4 Solution of one dimensional structural and thermal problems using FEA Software, Selection of suitable Element Type, Modeling, Meshing, Boundary Condition, Convergence of solution, Result analysis, Case studies. | 06 |
| 04 | **Two Dimensional Finite Element Formulations**
| | 4.1 Introduction, Three nodded triangular element, four nodded rectangular element, four nodded quadrilateral element, eight nodded quadrilateral element.
| | 4.2 Natural coordinates and coordinates transformations: serendipity and Lagranges methods for deriving shape functions for triangular and quadrilateral element
| | 4.3 Sub parametric, Isoperimetric, super parametric elements. Compatibility, Patch Test, Convergence criterion, Sources of errors. | 06 |
Two Dimensional Vector Variable Problems

05	**Equations of elasticity – Plane stress, plane strain and axisymmetric problems.**
05	**Jacobian matrix, stress analysis of CST and four node Quadratic element**
05	**Solution of 2-D Problems using FE Software (structural and Thermal), selection of element type, meshing and convergence of solution. (Can be covered during practical hours).**

Finite Element Formulation of Dynamics and Numerical Techniques

06	**Applications to free vibration problems of rod and beam. Lumped and consistent mass matrices.**
06	**Solutions Techniques to Dynamic problems, longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation, Transverse deflections and Natural frequencies of beams.**
06	**Finding frequencies of beam using FE Software (Can be covered during practical hours).**

List of Assignment

Students should use the commercial software or programmes from the text-books or self-developed programs, to verify the results obtained by manual calculations. The input data and output results of the problem solved using the computer programs should be included in the Journal. The proposed list is as given below:

1. Any two problem using bar element
2. Any two problems using truss element
3. Any two problems using CST element
4. Any one problem using axisymmetric element
5. Any one problem of free vibration analysis using bar element
6. Any one problem on Steady State Heat conduction.

Course Project

A group of not more than four (04) students, shall do Finite Element Analysis of any mechanical engineering element/system, which involves element selection, assigning properties, meshing, assigning loads and boundary conditions, analysis and result interpretation.

Term Work

Term work shall consist of minimum **06** assignments and course project. The distribution of marks for term work shall be as follows:

- Laboratory work (experiments/assignments): 10 Marks.
- Course project: 10 Marks.
- Attendance: (Theory and Practicals): 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.
Practical/oral examination

1. Practical examination duration is 2 hours.
2. Assignment for the examination shall be based on the list of assignment mentioned in the term work.
3. The distribution of marks for practical/oral examination shall be as follows:
 i. Practical performance: 15 marks
 ii. Oral: 10 marks
4. Evaluation of practical examination to be done based on the experiment performed and the output of the experiments during practical examination.
5. Students work along with evaluation report to be preserved till the next examination

Theory examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

Course Code	Course/Subject Name	Credits
MEC701 | Machine Design- II | 4+1

Objectives
1. To study functional and strength design of important machine elements
2. To study selection of rolling element bearing and design of hydrodynamic bearing.

Outcomes: Learner will be able to…
1. Select appropriate gears for power transmission on the basis of given load and speed.
2. Design gears based on the given conditions.
3. Select bearings for a given applications from the manufacturers catalogue.
4. Select and/or design belts for given applications.
5. Design cam and follower and clutches

<table>
<thead>
<tr>
<th>Modules</th>
<th>Detailed Content</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Design of spur, helical, bevel and worm gears with strength, wear and thermal considerations. Two stage Gear box with fixed ratio consisting of spur, helical and bevel gear pairs: gear box housing layout and housing design.</td>
<td>16</td>
</tr>
<tr>
<td>02</td>
<td>Types of bearing and designation, Selection of rolling contact bearings based on constant / variable load & speed conditions (includes deep groove ball bearing, cylindrical roller, spherical roller, taper roller, self aligning bearing and thrust bearing).</td>
<td>05</td>
</tr>
<tr>
<td>03</td>
<td>Design of hydro dynamically lubricated bearings (Self contained) Introduction to hydro static bearings Types and selection of Mechanical Seals</td>
<td>05</td>
</tr>
<tr>
<td>04</td>
<td>Design of cam and roller follower mechanisms with spring and shaft.</td>
<td>06</td>
</tr>
<tr>
<td>05</td>
<td>Design and selection of Belts:- Flat and V belt with Pulley construction. Design and selection of standard roller chains.</td>
<td>08</td>
</tr>
<tr>
<td>06</td>
<td>Design of single plate, multiplate and cone clutches, with spring, lever design and thermal, wear considerations.</td>
<td>08</td>
</tr>
</tbody>
</table>

Term Work
Term work shall comprise of

1. Exercises on the above topics in the form of design calculations with sketches and or drawings.
2. Design and detailed assembly drawing of minimum two design problems, from the module 1, 4, 5 and 6. (Computer aided drawing on A-3 size sheets).
3. **Course project**: Students in a group of two to four will be able to design and prepare working drawings of any system having minimum 5 to 6 components by applying the knowledge gained during the course.

The distribution of marks for term work shall be as follows:
- Exercises & Drawing Sheets : 15 Marks
- Course Project : 05 Marks
- Attendance (Theory & Practical) : 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.
NOTE
Use of standard design data books like PSG Data Book, Design Data by Mahadevan is permitted at the examination and shall be supplied by the institute.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Practical/Oral Examination
Each student will be given a small task of design based on syllabus, which will be assessed by examiners during the oral examination.

The distribution of marks for oral-practical examination shall be as follows:

<table>
<thead>
<tr>
<th></th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Task</td>
<td>15</td>
</tr>
<tr>
<td>Oral</td>
<td>10</td>
</tr>
</tbody>
</table>

1. Evaluation of practical/oral examination to be done based on the performance of design task.
2. Students work along with evaluation report to be preserved till the next examination.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
6. Recommended Data Books – PSG and K. Mahadevan
7. Gear Design Handbook - GitinMaitra
8. Material handling equipments - N. Rudenko , Peace Publication
9. Material handling equipments - Alexandrov, MIR Publication
10. Machine Design - Reshetov - Mir Publication
14. Pumps – Sahu
Objectives
1. To introduce new and exciting field of Intelligent CAD/CAM/CAE with particular focus on engineering product design and manufacturing.
2. To develop a holistic view of initial competency in engineering design by modern computational methods.

Outcome: A learner will be able to….
1. Identify proper computer graphics techniques for geometric modelling.
2. Transform, manipulate objects and store and manage data.
3. Prepare part programming applicable to CNC machines.
4. Use rapid prototyping and tooling concepts in any real life applications.
5. Identify the tools for Analysis of a complex engineering component.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Computer Graphics and Techniques for Geometric Modeling</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>Computer Graphics: Two dimensional computer graphics, vector generation, the windowing transformation, Three dimensional Computer graphics, viewing transformation, Homogeneous coordinates, Perspective projection, Hidden line removal & hidden surface removal algorithm, light & shade ray tracing. The parametric representation of geometry, Bezier curves, Cubic Spline curve, B-Spline curve, parametric representation of line, circle, ellipse & parabola. Constructive solid geometry (CSG), Boundary Representation (B-Rep), Wire Frame Modeling, Solid Modeling, Surface Modeling, Parametric Modeling, feature based modeling, Feature recognition, Design by feature.</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Transformation, Manipulation & Data Storage</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>2D & 3D Transformations (Translation, Rotation, & Scaling & Magnification), Concatenations, Matrix representation, Problems & object oriented programming on Transformations. Object transformation, mirror transformation, Artificial Intelligence in Design & Manufacturing, Representation of Knowledge, and Knowledge base Engineering.</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>NC & CNC Technology</td>
<td>08</td>
</tr>
<tr>
<td>04</td>
<td>Computer Aided Engineering (CAE)</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>Fundamentals of computer aided engineering, CAE includes mass property calculations, kinematic analysis and animation (movement, visualization, simulation and FEA). Case study based on modeling and analysis of structural, thermal/fluid, and dynamic (vibration analysis) system. Parameter optimization.</td>
<td></td>
</tr>
</tbody>
</table>
List of Exercises
1. Programming for transformations,
2. Solid modeling using any 3D modeling software
3. Part programming and part fabrication on CNC trainer (Turning / Milling)
5. Development of physical 3D mechanical structure using any one of the rapid prototyping processes.
6. Rapid tooling for any one of the engineering or medical applications.

Term Work
Term work shall consist of any three exercises from the above list and a course project in a group of not more than three (3) students on either computer aided engineering or rapid prototyping and tooling.

The distribution of marks for term work shall be as follows:
- Exercises : 15 Marks
- Course Project : 05 Marks
- Attendance (Theory & Practical) : 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems.
Practical / Oral Examination
Practical examination of 2 hours duration based on any one of the following.
1) Programming for Algorithms, transformations.
2) Part Programming and machining of components.
3) 3D Modeling on software.
4) Analysis of component for optimization

The distribution of marks for oral-practical examination shall be as follows:

<table>
<thead>
<tr>
<th>Practical Examination</th>
<th>Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 marks</td>
<td>10 marks</td>
</tr>
</tbody>
</table>

1. Evaluation of practical/oral examination to be done based on the performance of design task.
2. Students work along with evaluation report to be preserved till the next examination.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
4. “CAD/CAM Principles, Practice and Manufacturing Management” by Chris McMahon, Jimmie Browne, Pearson Education
5. “CAD/CAM/CIM” by P. Radhakrishan, S. Subramanayan, V. Raju, New Age International Publishers
8. David L. Goetsch, Fundamental of CIM technology ,Delmar publication
18. “Rapid Prototyping” Chee Kai Chua World Scientific Publishing
Course Code
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course/Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC703</td>
<td>Mechanical Utility Systems</td>
<td>4+1</td>
</tr>
</tbody>
</table>

Objectives
1. To study compressors, pumps and their utilities
2. To acquaint with various energy conservation techniques in pumping and compressed air systems

Outcomes:
The learner will be able to:
1. Describe operating principles of compressors and pumps
2. Evaluate performance of reciprocating/rotary compressors
3. Illustrate and analyze characteristic curves of pumps
4. Interpret possibilities of energy conservation in pumping and compressed air systems

Module 01
Reciprocating Compressors

Module 02
Rotary Compressors
- **Centrifugal compressor:** Velocity diagrams, work input, Efficiency, Effect of blade shape, Slip factor, Types of casings, Impeller and diffuser system and design aspects
- **Axial flow compressors:** Velocity triangles and calculation of work input and efficiency
- **Losses in Compressors:** Choking, Surging and Stalling

Module 03
Pumps
- Classification of pumps - positive displacement and non - positive displacement.
- Positive Displacement pumps: Types and applications, general features of rotary pumps like gear pumps, vane pumps etc., general feature of reciprocating pumps, definition of head, discharge, work done and efficiency, types of reciprocating pumps, indicator diagram, use of air vessel.

Module 04
Centrifugal Pumps
- Types - radial flow, mixed flow and axial flow, Priming of pumps, components of the pump, Euler's equation and velocity triangles, correction factors for the head, design constant e.g., head constant, flow constant etc., Types of blade profiles, aerofoil theory of axial flow pumps, Pressure recuperating devices, Radial thrust and axial thrust and methods used to balance them.
- Trouble shooting in centrifugal pumps, self priming pumps. Concept of system and system characteristics, Series and parallel operation of pumps. System curve for branch network. Determination of operating point.
- Cavitation in pumps, Determination of available and required NPSH
List of Experiments
1. Study of rotary compressors
2. Demonstration of different components of centrifugal pump by dismantling the pump system
3. Trial on reciprocating compressor
4. Trial on positive displacement pump
5. Trial on single stage centrifugal pump
6. Trial on multistage centrifugal pump
7. Presentation on various energy conservation techniques in pumping and compressed air system

Term work
Term work shall consist of minimum 03 assignments covering numerical on compressors and pumps and at least 06 experiments from the above list. The distribution of marks for term work shall be as follows:

- Laboratory work (experiments/assignments): 15 marks
- Assignments: 05 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References

1. Thermal Engineering – R. K. Rajput
2. Steam and gas turbine – R. Yadav
3. Turbines, Compressors & Fans by S M Yahya, Tata Mc graw Hill
8. Study material for Energy Auditor and Energy Manager Examination, Bureau of Energy Efficiency (www.beeindia.in)
Objectives
1. To provide a comprehensive exposure to Production Planning & Control (PPC) and its significance in Industries.
2. To acquaint students with various activities of PPC.
3. To give insight into the ongoing & futuristic trends in the control of inventory.
4. To appraise about need and benefits of planning functions related to products and processes.
5. To give exposure to production scheduling and sequencing

Outcomes: The learner will be able to..
1. Illustrate production planning functions and manage manufacturing functions in a better way.
2. Develop competency in scheduling and sequencing in manufacturing operations and effect affordable manufacturing lead time.
3. Manage and control inventory with cost effectiveness.
4. Get conversant with various documents procedural aspects and preparation of orders for various manufacturing methods.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Concepts of PPC:</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>1.1 Manufacturing systems- components and types, need for PPC, functions of PPC, relationship of PPC with other departments.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 Factors influencing PPC in the organization, manufacturing methods- projects & jobbing products, batch, mass / flow production, continuous / process production.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Management policies- planning for meeting demands, work distribution, centralization,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 Organization of PPC- status of PPC department, internal structure, degree of centralization, PPC as an integrated approach.</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Activities of PPC:</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>2.1 Prerequisites of PPC- data pertaining to design, equipment, raw materials, tooling, performance standards, labour& operating systems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Order preparation- works order preparation for various manufacturing methods, subsidiary orders, shop or production orders, inspection orders and stores issue orders.</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Inventory Control:</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>3.1 Basic concepts of inventory, purpose of holding stock and influence of demand on inventory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2 Ordering procedures, Two Bin system, ordering cycle, economical order quantity and economical lot size, ABC analysis and reorder procedures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3 Recent trends- computer integrated PP systems, JIT system and MRP-I, MRP-II and ERP (only theory).</td>
<td></td>
</tr>
</tbody>
</table>
| 04 | **Product Planning and Process Planning**
 4.1 Product planning: product information and its relevance. Problems in lack of product planning.
 4.2 Process planning: Prerequisite information requirement, steps in process planning, process planning in different situations, documents in process planning, machine / process selection & Computer Aided Process Planning.
 4.3 Forecasting: Various Qualitative and Quantitative models, their advantages and disadvantages. | 10 |
| 05 | **Linear Programming Concepts**
 Introduction to Linear Programming, Problem Formulation, Simplex method. Assignment, Transportation and Transshipment Models. | 08 |
| 06 | **Production Scheduling and Sequencing**
 6.1 Inputs for scheduling, loading and scheduling devices, factors influencing scheduling, scheduling techniques, use of Gantt Charts and basic scheduling problems.
 6.2 Product sequencing, dispatching: progress report & expectation of manufacturing lead time technique for aligning completion time & due dates.
 6.3 Project management: concepts of project planning, monitoring and control, elements of network analysis –PERT & CPM, cost analysis & crashing. | 12 |

Term Work
The Term work shall comprise of the following:-
1. At least six exercises/assignments comprising problems covering different topics from the syllabus.
2. One seminar presentation based on a selected topic from the syllabus.
3. One seminar presentation pertaining to a case study related to PPC

The distribution of marks for term work shall be as follows:
- Lab work (Exercises /Assignments): 10 marks
- Presentation: 10 marks
- Attendance (Theory and Practical’s): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Oral examination
1. Oral examination shall be conducted based on term work and syllabus content
2. Examiners are expected to give small task or ask questions either to evaluate understanding of basic fundamentals or to evaluate their capability of applying basic theory to practical applications.
Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
Objectives
1. To familiarize the students with the need, benefits and components of PLM.
2. To acquaint students with Product Data Management & PLM strategies.
3. To give insights into new product development program and guidelines for designing and developing a product.
4. To appraise about technology forecasting & its implications.

Outcome: The learner will be able to…..
1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
2. Illustrate various approaches and techniques for designing and developing products.
3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
4. Identify and use appropriate technology forecasting, methods for different areas of technology.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Detailed contents</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction to Product Lifecycle Management (PLM)
Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications
PLM Strategies
Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy , Change management for PLM</td>
<td>05</td>
</tr>
<tr>
<td>2.</td>
<td>Product and Product Data
Product Importance, Range, Parts, Ingredients, Components, Assemblies, Identifier, Requirements From Customer, Requirement to Product Specification, Identification Standards, Unique Identifier, Unique Key, Traceability. Communication of Identifier, Product Classification, Versions, Variants, Options, Product Ownership, Product Structure and Architecture, Product Data types and importance, Product Data Models
Product Data Management (PDM)
PDM systems and importance, Components of PDM, Reason for implementing a PDM system, Financial justification of PDM, Barriers to PDM implementation</td>
<td>07</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Technology Forecasting
Evolution for technology forecasting and its importance, Future mapping, Methods of technology forecasting, Numerical Data Based, Judgement Based such as Relevance Trees, Morphological Method, Network Analysis, Delphi Method, Cross Impact Method</td>
<td>05</td>
</tr>
</tbody>
</table>

Term Work

Term work shall comprise of the following:-

1. One assignment on understanding basic PLM curve, perspective from manufacturer and user point of view, drawing and analysing the PLM curve for specific products.
2. One assignment on product data, PDM and its suitable applications/examples.
3. One case study on understanding complete product design procedure, documenting and interpreting data related to design process.
4. One case study on Design for Disassembly (DfD), disassembly of an actual product/system and understanding for DfD, Design for Environment (DfE).
5. One case study on Useful life extension and End of life strategies of actual products.
6. One presentation pertaining to one of the topic from the syllabus.

The distribution of marks for term work shall be as follows:

- Assignments: 05 Marks
- Case Studies: 10 Marks
- Presentations: 05 Marks
- Attendance(Theory and Practical’s): 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References
Course Code: MEE7012
Course/Subject Name: Power Plant Engineering
Credits: 3+1

& Common with Automobile Engineering

Objectives
1. Study basic working principles of different power plants
2. Study power plant economics

Outcomes: Learner will be able to...
1. Comprehend various equipments/systems utilized in power plants
2. Discuss types of reactors, waste disposal issues in nuclear power plants
3. Illustrate power plant economics

Module	Detailed Contents	Hrs.
01 | Introduction: Energy resources and their availability, types of power plants, selection of the plants, review of basic thermodynamic cycles used in power plants. | 04
02 | Hydro Electric Power Plants: Rainfall and run-off measurements and plotting of various curves for estimating stream flow and size of reservoir, power plants design, construction and operation of different components of hydro-electric power plants, site selection, comparison with other types of power plants. | 06
03 | Steam Power Plants: Flow sheet and working of modern-thermal power plants, super critical pressure steam stations, site selection, coal storage, preparation, coal handling systems, feeding and burning of pulverized fuel, ash handling systems, dust collection-mechanical dust collector and electrostatic precipitator. | 08
04 | Combined Cycles: Constant pressure gas turbine power plants, Arrangements of combined plants (steam & gas turbine power plants), re-powering systems with gas production from coal, using PFBC systems, with organic fluids, parameters affecting thermodynamic efficiency of combined cycles. Problems. | 06
05 | Nuclear Power Plants: Principles of nuclear energy, basic nuclear reactions, nuclear reactors-PWR, BWR, CANDU, Sodium graphite, fast breeder, homogeneous; gas cooled. Advantages and limitations, nuclear power station, waste disposal. | 06
06 | Power Plant Economics: Load curve, different terms and definitions, cost of electrical energy, tariffs methods of electrical energy, performance & operating characteristics of power plants- incremental rate theory, input-out put curves, efficiency, heat rate, economic load sharing, Problems. | 06

List of Experiments
1. Case study report on at least two types of power plants
2. Group presentation (Group shall not be more than 3 students) on topics relevant to syllabus
3. Industrial visit to any power plant
Term Work
Term work shall consist of one case study report and 5 assignments covering maximum syllabus.

The distribution of marks for term work shall be as follows:

- Case study: 05 marks
- Industrial visit report: 05 marks
- Presentation: 05 marks
- Assignments: 05 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
1. Power Plant Engineering, A K Raja, Amit Praksh Shrivastava, Manish Dwivedi, New Age International Publishers
8. Power Plant Engineering, G.R. Nagpal, Khanna Publishers
11. Power Plant Engineering, Manoj Kumar Gupta, PHI Learning
12. Nuclear Power Plant Engineering, James Rust, Haralson Publishing Company
Objectives
1. Study principles of energy management
2. Study energy economics and auditing
3. Study electrical energy management, cogeneration and waste heat recovery

Outcomes: Learner will be able to…
1. Summarize and explain need for energy management, economics and auditing
2. Describe importance of and analyze efficiency in thermal and electrical utilities
3. Assess need of waste heat recovery and cogeneration

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Energy Auditing : Need of Energy Audit, Types of energy audit, Components of energy audit, Energy audit methodology, Instruments, equipment used in energy audit, Analysis and recommendations of energy audit - examples for different applications, Energy audit reporting, Energy audit software.</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>Energy Economics : Costing of Utilities - Determination of cost of steam, natural gas, compressed air and electricity. Financial Analysis Techniques - Simple payback, Time value of money, Net Present Value (NPV), Return on Investment (ROI), Internal Rate of Return (IRR), Risk and Sensitivity analysis.</td>
<td>08</td>
</tr>
<tr>
<td>06</td>
<td>Cogeneration and Waste Heat Recovery, Cogeneration- Need, applications, advantages, classification, the cogeneration design process. Waste heat recovery- Classification and application, Potential for waste-heat recovery in Industry, Commercial WHR devices, saving potential. CDM projects and carbon credit calculations.</td>
<td>06</td>
</tr>
</tbody>
</table>

List of Experiments
1. Energy audit of a small scale industry/institute and submit report with recommendation.
2. Energy audit of HVAC or Compressed air or Boiler and steam system and submit report with recommendations.
3. Carry out the Energy audit of Electrical system.
4. Electrical tariff calculations
5. Visit to cogeneration or waste heat recovery plant and submit a report
Term Work
Term work shall consist of experiments from the list including energy audit reports, 3 assignments covering maximum portion of the syllabus and a report on factory visit

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiments) : 10 marks
- Assignments : 05 marks
- Visit report: 05 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
1. Energy engineering and management, AmlanChakrabarti, PHI Learning, New Delhi 2012
5. Energy Performance assessment for equipment and Utility Systems Vol. 1 to 4, Bureau of Energy Efficiency, Govt. of India
11. www.energymangertraining.com
12. www.bee-india.nic.in
Course Code | Course/Subject Name | Credits
--- | --- | ---
MEE7014 | Supply Chain Management** | 3+1
** Common with Automobile Engineering

Objectives

1. To acquaint with key drivers of supply chain performance and their inter-relationships with strategy.
2. To impart analytical and problem solving skills necessary to develop solutions for a variety of supply chain management & design problems.
3. To study the complexity of inter-firm and intra-firm coordination in implementing programs such as e-collaboration, quick response, jointly managed inventories and strategic alliances.

Outcomes: Learner will be able to…..

1. Illustrate the role & functions of supply chain management and its processes.
2. Analyze the flows of material, information and funds in an integrated manner.
3. Evaluate various performance measures of supply chain management.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Building a Strategic Frame Work to Analyse Supply Chains
Supply chain stages and decision phases, Process view of supply chain: Supply chain flows, Examples of supply chains, Competitive and supply chain strategies, Achieving strategic fit: Expanding strategic scope, Drivers of supply chain performance. Framework for structuring drivers: inventory, transportation facilities, information obstacles to achieving fit.</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>Designing the Supply Chain Network
Distribution Networking: Role, Design, Supply Chain Network(SCN):Role, Factors, Framework for design decisions.</td>
<td>05</td>
</tr>
<tr>
<td>03</td>
<td>Materials Management
Scope, Importance, Classification of materials, Procurement, Purchasing policies, Vendor development and evaluation. Inventory control systems of stock replenishment, Cost elements, EOQ and its derivative modules.</td>
<td>06</td>
</tr>
<tr>
<td>04</td>
<td>Dimensions of Logistics
Introduction: A Macro and Micro Dimensions, Logistics interfaces with other areas, Approach to analyzing logistics system, Logistics and systems analyzing: Techniques of logistics system analysis, factors affecting the cost and Importance of logistics.</td>
<td>06</td>
</tr>
<tr>
<td>05</td>
<td>Warehouse and Transport Management
Concept of strategic storage, Warehouse functionality, Warehouse operating principles, Developing warehouse resources, Material handling and packaging in warehouses, Transportation Management, Transport functionality and principles, Transport infrastructure, transport economics and Pricing, Transport decision making.</td>
<td>07</td>
</tr>
<tr>
<td>06</td>
<td>IT in Supply Chain
6.1 IT framework, Customer Relationship Management (CRM), internal Supply chain management, Supplier Relationship Management (SRM) and Transaction Management. Coordination in a Supply Chain 6.2 Lack of supply chain coordination and the Bullwhip effect, Obstacle to Coordination, Managerial levers, Building partnerships and trust. Emerging Trends and Issues 6.3 Vendor managed inventory-3PL-4PL, Reverse logistics: Reasons, Role, Activities; RFID systems: Components, Applications, Implementation; Lean supply chain, Implementation of Six Sigma in supply chain, Green supply chain.</td>
<td>08</td>
</tr>
</tbody>
</table>
Term Work

Term work shall consist of,
1. Assignments: On topics drawn from syllabus [At least 1 assignment per module].
2. Seminar / case study on the modules / trending scenario (current) in industry.

The distribution of marks for term work shall be as follows;
- Seminar / Case study Presentation & report: 10 marks
- Assignments: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

1. Supply Chain Management Strategy, Planning, and operations, Sunil Chopra and Peter Meindl
5. The Management of Business Logistics: A Supply Chain Perspective, Coyle, Bardi, Langley
Course Code | Course/Subject Name | Credits |
------------|-----------------------------|---------|
MEE 7015 | Computational Fluid Dynamics & Common with Automobile Engineering | 3+1 |

Objectives
1. Study basic principles of modeling a system using software
2. Study grid generation and discretization methods

Outcomes: Learner will be able to…
1. Demonstrate & explain geometrical model of a fluid flow
2. Describe specific boundary conditions and solution parameters
3. Analyze the results and draw the appropriate inferences

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction: What is CFD, Scope and Application of CFD, Methods of Predictions like Experimental and theoretical, Working of Commercial CFD Softwares, Solution methodology-Preprocessing, Solver, Post processing.</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>Heat Conduction, Convection and Diffusion: Steady One-dimensional Conduction, Unsteady One-dimensional Conduction, Two and Three-dimensional Situations, Over relaxation and Under relaxation, Steady One-dimensional and Two Dimensional Convection-Diffusion, Unsteady One-dimensional Convection</td>
<td>06</td>
</tr>
<tr>
<td>06</td>
<td>Finite Volume Methods: FVM solutions to steady one, two and three dimensional diffusion problems and unsteady one and two dimensional diffusionproblems, FVM solutions to convection-diffusion problems - one and twodimensional, steady and unsteady; Advection schemes; Pressure velocity coupling</td>
<td>06</td>
</tr>
</tbody>
</table>

List of Experiments
1. Simulate and solve, two problems, each 2-d and 3-d steady and unsteady flows using any commercial CFD package like Ansys-FLUENT, STAR CCM, FLUIDYNE, Ansys-CFX, etc.
2. Write codes for, at least one each, 1-d and 2-d steady conduction with and without source and do the post processing to verify with analytical results
3. Write codes, at least one, for steady, 2-d conduction-advection problems and do the post processing to verify with analytical results
Term Work
Term work shall consist of experiments from the list, 3 assignments covering maximum portion of the syllabus.

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiments) : 15 marks
- Assignments : 05 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
Course Code	Course/Subject Name	Credits
MEE 7016 | Advanced Turbo Machinery | 3+1

Objectives
1. To study principles of turbo machinery
2. To develop knowledge and ability to design/suggest turbo machine for particular application
3. To study testing and control of fans/blowers

Outcomes: Learner will be able to:
1. Recognize typical designs of turbo machines
2. Determine the velocity triangles in turbo machinery stages operating at design and off-design conditions
3. Analyse performance of various turbo machines

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Principles of Turbo machinery: Introduction, Overview and Machinery Classification, Review of Conservation Laws, Scaling Laws, Work and Efficiencies in Compressor Stages, Selection of centrifugal, axial, mixed flow, Axial flow machines based on specific Speed.</td>
<td>06</td>
</tr>
<tr>
<td>02</td>
<td>Flow Through Cascades: Two-dimensional Flow, Cascade of Blades, Cascade Tunnel, Axial Turbine Cascades, Axial Compressor Cascades.</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>Analysis of Axial Turbine Stage: Single Impulse Stage, Multi-stage velocity and Pressure Compounded Impulse, Reaction Stages, Losses and Efficiencies, Performance Charts.</td>
<td>06</td>
</tr>
<tr>
<td>04</td>
<td>Analysis of Centrifugal Blower: Theoretical Characteristic Curves, Euler Characteristics and Euler Velocity Triangles, Losses and Efficiencies, Flow through impeller Casing, , Multi-vane Impellers of Impulse Type, Cross flow Fans.</td>
<td>06</td>
</tr>
<tr>
<td>05</td>
<td>Testing and Control of Fans: Fan Testing, Noise Control, Materials and Components Blower, Regulation, Speed Control, Throttling Control at Discharge and Inlet.</td>
<td>06</td>
</tr>
<tr>
<td>06</td>
<td>Design and Application of Blowers: Special Design and Applications of Blower, Induced and Forced Draft Fans for Cooling Towers, Ventilation Systems, Booster Systems.</td>
<td>06</td>
</tr>
</tbody>
</table>

Term Work
Term work shall consist of minimum 6 assignments and a presentation on syllabus related topic (prepared and presented by a group of not more than 3 students).

The distribution of marks for term work shall be as follows.
- Assignments: 10 marks
- Presentation: 10 Marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.
Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

Objectives
1. Study fundamental, codes and standards of piping systems
2. Study piping layout and drawings
3. Study basic loading conditions and failure nodes

Outcomes: Learner will be able to…
1. Discuss different piping standards and codes
2. Read piping symbols, drawings and layouts
3. Analysis of piping supports and systems in terms of stress

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction to Piping: Introduction to phases of plant design, Role of Piping within project plan. Design Philosophy, Process data sheets, Process flow diagram, Piping & Instrumentation diagrams, and Equipment layout. Interdisciplinary inputs/coordination.</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>Piping fundamentals: Piping elements (pipes, fittings, flanges, gasket, bolting, Valves), Pipe schedule, Pipe thickness calculations, pipe fittings (bends, elbow, Tees, Reducers, Stub ends, cross), Special pipe fittings, expansion joints, types of flanges, pressure temperature rating for flanges.</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>Piping Codes & Standards American Standards, Indian standards, British Standards for Piping Engineering. Selection of Design code. Unified numbering system (UNS). Piping materials: ASME, ASTM, IS materials for piping components such as pipe, fittings, flanges, bolting, supports, expansion joints, valves etc. Selection of materials.</td>
<td>08</td>
</tr>
<tr>
<td>05</td>
<td>Piping supports Fixed supports like Rest, Line guide, Line stop, Hold down, Rigid strut etc., Flexible supports like variable spring support, constant spring support, Snubber etc.</td>
<td>06</td>
</tr>
<tr>
<td>06</td>
<td>Piping Stress Analysis : Need of Stress Analysis, Procedure to carry out stress analysis, Loads on the piping system(such as sustained, thermal, hydro-test loads, water hammer, relief valve outlet), Allowable stress, Flexibility analysis, thermal load calculations, critical line list preparation, Steps involve in stress analysis of piping system, Pipe support.</td>
<td>06</td>
</tr>
</tbody>
</table>

List of Experiments
1. Draw Piping Symbols.
2. Draw General Arrangement for Plant Layout.
3. Draw Orthographic drawing of any 5 piping systems
Term Work
Term work shall consist of experiments from the list including assignments on
1. Introduction to Piping
2. Piping fundamentals
3. Piping Codes & Standards
4. Piping materials
5. Piping supports
6. Piping Stress Analysis

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiments) : 10 marks
- Assignments : 10 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
3. ASME code for Process Piping, ASME B31.1
4. ASME code for Process Piping, ASME B31.3
5. ASME B16.5, Pipe Flanges & Flange Fittings
Objectives
1. Study impacts of pollution on environment
2. Study emission measurement and control techniques

Outcomes: Learner will be able to...
1. Illustrate sources of emission, measure and quantify air pollution level and harmful effects of pollution
2. Summarize and explain pollution norms, clean air act etc.
3. Describe importance of emission measurement and control
4. Assess need of eco-friendly fuel and vehicle

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Air Pollution due to Automobile Exhaust: Exhaust gas constituents & analysis, Ingredients responsible for air pollution, Harmful effects of various ingredients on plant ecology & human life. Pollution Norms: European pollution norms, Indian pollution norms as per Central Motor Vehicle Rules (C.M.V.R.).</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>Sources of Emission: Air Pollution due to engine exhaust, Emission from petrol tank & carburetor, crankcase blow-by. Effect of valve timing, ignition timing, Combustion chamber design, Fuel injection, fuel composition, air fuel ratio, mechanical condition of engine components and driving mode.</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>Smoke: Smoke problems, types of smoke, factors affecting diesel smoke, odor, Smog formation. Exhaust Emission Control: Basic method of emission control, catalytic converter, After burners, reactor manifold, air injection, crank case emission control, evaporative loss control, Exhaust gas recirculation, Fuel additives.</td>
<td>08</td>
</tr>
<tr>
<td>04</td>
<td>Control Techniques for SI and CI: Design changes, optimization of operating factors, exhaust gas re-circulation, fumigation and air injector PCV system-Exhaust treatment in SI engines - Thermal reactors, Catalysts, Uses of unleaded petrol.</td>
<td>06</td>
</tr>
<tr>
<td>05</td>
<td>Alternative Fuels: CNG, LPG, Bio-Diesel, Hydrogen, fuel cells, Eco-friendly vehicles, Electric & Solar operated vehicle.</td>
<td>06</td>
</tr>
<tr>
<td>06</td>
<td>Instrumentation for Exhaust Emission Measurement: Measurement procedure, Sampling Methods, Orsat Apparatus, Infrared Gas analyzer, Flame Ionization Detector (FID), Gas chromatograph, Smoke meters.</td>
<td>06</td>
</tr>
</tbody>
</table>

List of Experiments
1. Study of Emission Norms
3. Measurement of emission by Infra Red Gas Analyzer (IRGA)
4. Measurement of smoke by Bosch smoke meter
5. Measurement of smoke by Hartridge smoke meter
6. Study of Exhaust Gas Recirculation (EGR)
7. Study of Evaporative Loss Control Device (ELCD)
8. Study of catalytic converter
9. Analysis of exhaust gas using Orsat Apparatus
10. Study of LPG / CNG Kit
Term Work
Term work shall consist of minimum 6 experiments from the list, 3 assignments covering maximum portion of the syllabus and a report on factory visit.

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiments) : 15 marks
- Assignments : 05 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
1. Internal Combustion Engine and Air Pollution, E.F. Oberts, Row Publisher, NY
5. Environmental engineering, C J Rao, New Age Publishers
6. Environmental studies, D L Manjunath, Pearson
8. Automobile Engineering, G.B.S. Narang, CBS Publishers & Distributors, Delhi
10. Light & Heavy Vehical technology, M. J. Nunney, Elsevier
Objectives
1. To familiarize the students with the use of practice oriented mathematical applications for optimization functions in an organization.
2. To familiarize the students with various tools of optimization, probability, statistics and simulation, as applicable in particular scenarios in industry for better management of various resources.

Outcomes: Learner will be able to…..
1. Illustrate the need to optimally utilize the resources in various types of industries.
3. Apply and analyze mathematical optimization functions to various applications.
2. Demonstrate cost effective strategies in various applications in industry.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Linear Programming: Linear Programming Problem Formulation, Graphical solution, Simplex method, Twophase method, Big-M method, Principle of Duality, Dual Simplex, Sensitivity Analysis.</td>
<td>11</td>
</tr>
<tr>
<td>02</td>
<td>Transportation problem: Formulation - Optimal solution, Degeneracy. Assignment problem: Formulation - Optimal solution, Traveling Salesman problem. Sequencing: Introduction - Flow Shop sequencing - n jobs through two machines - n jobs through three machines - Job shop sequencing - two jobs through ‘m’ machines.</td>
<td>05</td>
</tr>
<tr>
<td>03</td>
<td>Replacement: Introduction - Replacement of items that deteriorate with time - when money value is not counted and counted - Replacement of items that fail completely, group replacement. Queuing Models: Introduction -Single Channel - Poisson arrivals - Exponential service times - with infinite population and finite population models, Multichannel - Poisson arrivals - Exponential service times with infinite population single channel Poisson arrivals.</td>
<td>05</td>
</tr>
<tr>
<td>04</td>
<td>Game Theory: Introduction - Minimax (Maximin) -Criterion and optimal strategy - Solution of games with saddle points – Rectangular games without saddle points - 2 X 2 games - dominance principle - m X2 & 2 X n games, graphical method.</td>
<td>05</td>
</tr>
<tr>
<td>05</td>
<td>Inventory Models: Introduction - Single item - Deterministic models - Purchase inventory models with one price break and multiple price breaks - shortages are not allowed - Stochastic models - demand may be discrete variable or continuous variable -Instantaneous production - Instantaneous demand and continuous demand and no set up cost.</td>
<td>05</td>
</tr>
<tr>
<td>06.</td>
<td>Dynamic programming: Introduction - Bellman’s Principle of optimality - Applications of dynamic programming- capital budgeting problem - shortest path problem – Minimum Spanning Tree. Simulation: Definition - Types of simulation models - phases of simulation - applications of simulation - Inventory and Queuing problems - Advantages and Disadvantages - Simulation Languages.</td>
<td>05</td>
</tr>
</tbody>
</table>
Term Work

Term work shall consist of;

1. Assignments: On topics drawn from syllabus [At least 1 assignment per module].
2. Based on topics from syllabus, minimum 06 problems are to be solved and presented with inferences.
3. Exposure to problem solving using MS Office Excel and software packages such as TORA, WinQSB and LINDO is recommended.

The distribution of marks for term work shall be as follows;

- Laboratory work (problem solving: manual/programs and journal): 10 marks
- Assignments: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

8. Introduction to O.R, Hiller & Libermann (TMH)
Objectives
1. To apprise the students of modern approaches in the field of maintenance.
2. To provide sufficient knowledge base pertaining to maintenance planning and management in industries.
3. To provide better insight into the ongoing global trends, pertaining to maintenance management.
4. To illustrate some of the simple instruments used for condition monitoring in maintenance in the industry.

Outcomes: Learner will be able to..
1. Get the exposure to the concept of overall equipment efficiency and its relevance in enhancing the productivity in industries.
2. Acquire skills in online condition monitoring techniques and maintenance logistics.
3. Develop competency in initiating and managing TPM tools in a manufacturing organization.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Maintenance Concepts</td>
<td>06</td>
</tr>
<tr>
<td>02</td>
<td>Maintenance Models</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>TPM Concepts</td>
<td>07</td>
</tr>
<tr>
<td>04</td>
<td>TPM Planning and Implementation</td>
<td>07</td>
</tr>
<tr>
<td>05</td>
<td>Maintenance Logistics</td>
<td>05</td>
</tr>
<tr>
<td>06</td>
<td>Online Monitoring</td>
<td>05</td>
</tr>
</tbody>
</table>
Term Work
Term work shall consist of at least two assignments from each module and presentation of a case study on TPM and analysis based on the topics mentioned above.

The distribution of marks for term work shall be as follows;
- Assignments: 10 marks
- Case study presentation: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
1. Introduction to TPM, Seiichi Nakajima, Productivity Press, Chennai.
4. Total Productive Maintenance for Workshop Leaders, Shirose K., Productivity Press.
5. TPM for Operators, Shirose, K., Productivity Press.
6. New Directions for TPM, Suzuki, T., Productivity Press.
Course Code | Course/Subject Name | Credits
--- | --- | ---
MEE70111 | Robotics | 3+1

Objectives
1. To familiarize the students with the significance of robotic system in agile and automated manufacturing processes.
2. To prepare the students to be conversant with robotic elements/ peripherals, their selection and interface with manufacturing equipments.
3. To familiarize the students with the basics of robot kinematics.

Outcomes: Learner will be able to..
1. Acquire the skills in understanding robot language and programming.
2. Acquire the skill in robot task planning for problem solving.
3. Develop skills in understanding various sensors, robot peripherals and their use.
4. Develop skills in identifying areas in manufacturing, where robotics can be deployed for enhancing productivity.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction Automation, robotics, Robotic system & Anatomy, Classification, Future Prospects.</td>
<td>03</td>
</tr>
<tr>
<td>02</td>
<td>Drives Control Loops, Basic Control System Concepts & Models, Control System Analysis, Robot Activation & Feedback Components, Position & Velocity Sensors, Actuators, Power Transmission system. Robot & its Peripherals End Effecters: Type mechanical and other grippers, Tool as end effector. Sensors: Sensors in Robotics, Tactile Sensors, Proximity & Range Sensors, Sensor Based Systems, Vision systems Equipment.</td>
<td>07</td>
</tr>
<tr>
<td>03</td>
<td>3.1 Machine vision Introduction, Low level & High level Vision, Sensing & Digitizing, Image Processing & analysis, Segmentation, Edge detection, Object Description & recognition, interpretation, Applications. 3.2 Programming for Robots Method, Robot Programme as a path in space, Motion interpolation, motion & task level Languages, Robot languages, Programming in suitable languages, characteristics of robot.</td>
<td>08</td>
</tr>
<tr>
<td>04</td>
<td>Robot Kinematics Forward, reverse & Homogeneous Transformations, Manipulator Path control, Robot Dynamics.</td>
<td>06</td>
</tr>
<tr>
<td>05</td>
<td>Root Intelligence & Task Planning Introduction, State space search, Problem reduction, use of predictive logic Means. Ends Analysis, Problem solving, Robot learning, Robot task planning.</td>
<td>06</td>
</tr>
<tr>
<td>06</td>
<td>Robot application in manufacturing Material transfer, machine loading & un loading, processing operation, Assembly & inspectors, robotic Cell design & control, Social issues & Economics of Robotics.</td>
<td>06</td>
</tr>
</tbody>
</table>
Term Work
Term work shall consist of,
1. Assignments: On topics drawn from syllabus [At least 1 assignment per module].
2. Practical’s: Minimum SIX exercises based on above topics including programming of robots.

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiment/ programs and journal): 10 marks
- Assignments: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
3. Robotic technology & Flexible Automation: S R Deb, TMH.
6. Robot Analysis & Control : H Asada, JJE Slotine
7. Robot Technology: Ed. A Pugh, Peter Peregrinus Ltd. IEE, UK.
Course Code: MEE7012
Course/Subject Name: Digital Prototyping for Product Design –I
Credits: 3+1

Objectives
1. To acquaint learner to product development process, industrial design and mechanical design workflows
2. To acquaint learner to product design ideas using 2D digital sketches

Outcomes:
Learner will be able to…
1. Describe the product development process
2. Combine Industrial design & Mechanical Design workflows
3. Express product design ideas using 2D digital sketches
4. Model an assembly of components with kinematic linkages

<table>
<thead>
<tr>
<th>Modules</th>
<th>Detailed Content</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction: Importance, considerations of a good design; design morphology; designing to codes and standards; Technological innovation and design process; identification of customer needs; quality function deployment and product design specification. Cloud Services in product Design</td>
<td>02</td>
</tr>
<tr>
<td>02</td>
<td>Concept Generation and Evaluation: Creativity and problem solving; inventive problem solving; generating design concepts; axiomatic design evaluation methods; decision making; conceptual design; embodiment design and detail design; product architecture; configuration design. Use of surface modelling tools to create shapes, volumes, surfaces; Use of parametric modelling tools. Combining Industrial design and mechanical design.</td>
<td>08</td>
</tr>
<tr>
<td>03</td>
<td>Collaboration and Concurrent Engineering: Importance of collaboration and concurrent engineering in the design process. Logically organizing and maintains valid links to files in your individual or team-based design projects. Work-in-progress data management integrated with the design applications. Accessing design information anywhere using cloud technology</td>
<td>08</td>
</tr>
<tr>
<td>04</td>
<td>Graphic Design Principles: Elements of Design, Geometric Dimensioning and Tolerancing; Dimensions and Annotations: Bidirectional Associativity; creating sketches for 3D model; constrain sketches; Principles of 2D Design; Visual Elements; Relational Elements; Types of Models; Surface Modelings. Solid Modeling; Solid Modeling Techniques; Design Intent.</td>
<td>08</td>
</tr>
<tr>
<td>05</td>
<td>Designing Part: Industrial Design workflow T- spline Technology. Design for Manufacture and Assembly (DFMA) Part creation workflow. Create complex shapes by sweeping or lofting profiles; Using IGES surfaces in the design process.</td>
<td>04</td>
</tr>
<tr>
<td>06</td>
<td>Managing Assemblies: Industrial Assemblies; Application of Assemblies (Automotive, Home Appliances, consumer electronic assemblies; Assembly Modeling techniques (Top-down, Bottom-up); Interference and Collision Detection; Bill of Materials; Kinematics & dynamics of a mechanism; Creating Adaptive part; Using Design Accelerator for creating functional design; Motion Analysis</td>
<td>06</td>
</tr>
</tbody>
</table>
List of Digital Prototyping Projects

1. Designing computer mouse using cloud services (Fusion 360)
2. Design new car seat component with conceptual sketches and renderings
3. Design new seat basic component
4. Design new automotive seat complex component (Exploring Component design projects)
5. Assembly of sub assembly within automotive seat and Pick and place robot
6. Manufacturing drawing creation for automotive seat components /optional Projects

Term Work
Term work shall consist of above projects in group of not more than 2 students and seminar on latest trends/developments in Product Design

The distribution of marks for term work shall be as follows:
- Course Project : 15 Marks
- Seminar : 05 Marks
- Attendance (Theory & Practical’s) : 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
5. Mastering Autodesk Inventor by Sybex
6. Autodesk Inventor 2012 for Designers by CADCIM Technologies
7. Autodesk Fusion 360 Learning and resources
Objectives
1. To study system concepts and methodology of system design.
2. To study system design of various systems such as snatch block, belt conveyors, engine system, pumps and machine tool gearbox.

Outcomes: Learner will be able to…
1. Design material handling systems such as hoisting mechanism of EOT Crane, belt conveyors.
2. Design engine components such as cylinder, piston, connecting rod and crankshaft from system design point of view.
3. Design pumps for the given applications.
4. Prepare layout of machine tool gear box and select number of teeth on each gear.

Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>Detailed Content</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Methodology & Morphology of design. Optimum design, System concepts in design.</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>Design of Hoisting mechanism: Design of Snatch Block assembly including Rope selection, Sheave, Hook, Bearing for hook, cross piece, Axle for sheave and shackle plate, Design of rope drum, selection of motor with transmission system.</td>
<td>10</td>
</tr>
<tr>
<td>03</td>
<td>Design of belt conveyors-- Power requirement, selection of belt, design of tension take up unit, idler pulley.</td>
<td>06</td>
</tr>
<tr>
<td>04</td>
<td>Engine Design (Petrol & Diesel): Design of Cylinder, Piston with pin and rings, Connecting Rod & Crank Shaft with bearings.</td>
<td>10</td>
</tr>
</tbody>
</table>
| 05 | Design of pump :
Design of main components of gear pump:
1. Motor selection
2. Gear design
3. Shaft design and bearing selection
4. Casing and bolt design
5. Suction and delivery pipe.
Design of main components of centrifugal pump:
1. Motor selection
2. Suction and delivery pipe
3. Design of Impeller, Impeller shaft,
4. Design of Volute casing. | 10 |
| 06 | Design of gear boxes for machine tool applications (Maximum three stages and twelve speeds): Requirements of gear box, determination of variable speed range, graphical representation of speeds, structure diagram, ray diagram, selection of optimum ray diagram, estimation of numbers of teeth on gears, deviation diagram, layout of gear box. | 08 |
Term Work

Term work shall comprise of

1. Exercises on the above topics in the form of design calculations with sketches and or drawings.
2. Design and detailed assembly drawing (Computer aided drawing on A-3 size sheets) of minimum two design problem, from the module 2, 3 and 5.
3. Course project: There will be a course project where the students will be able to apply and integrate the knowledge gained during the course. The projects will be developed by teams of Two to Four students and will consist of design of any system studied during the course.

The distribution of term work marks shall be as follow:
- Exercises & Drawing Sheets : 15 Marks
- Course Projects : 05 Marks
- Attendance (Theory & Practical) : 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Note

Use of standard design data books like PSG Data Book, Design Data by Mahadevan, Engine Design data book by Kale & Khandare are permitted at the examination and shall be supplied by the college.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Practical/Oral Examination

Students will be given small task of design which may be the part of term work, which will be assessed by examiners and oral examination.

The distribution of marks for oral-practical examination shall be as follows:
- Design Task 15 marks
- Oral 10 marks

1. Evaluation of practical/oral examination to be done based on the performance of design task.
2. Students work along with evaluation reportto be preserved till the next examination

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References

2) M.F. Spotts – ‘Mechanical design analysis’ Prentice Hall Inc.
12) Rudenko – ‘Material Handling Equipment’ M.I.R. publishers, Moscow
Course Code: MEC802
Course/Subject Name: Industrial Engineering and Management
Credits: 4+1

Objectives
1. To introduce the students to the concept of integration of various resources and the significance of optimizing them in manufacturing and allied Industries.
2. To acquaint the students with various productivity enhancement techniques.
3. To introduce the concepts of various cost accounting and financial management practices as applied in industries.

Outcomes: The learner will be able to...
1. Illustrate the need for optimization of resources and its significance in manufacturing industries, in order to enhance overall productivity.
2. Develop capability in integrating knowledge of design along with other aspects of value addition in the conceptualization and manufacturing stage of various products.
3. Demonstrate the concept of value analysis and its relevance.
4. Manage and implement different concepts involved in methods study and understanding of work content in different situations.
5. Describe different aspects of work system design and facilities design pertinent to manufacturing industries.
6. Identify various cost accounting and financial management practices widely applied in industries.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Detailed contents</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 01 | **Introduction to Industrial Engineering.**
History and contribution, Industrial engineering approach, techniques of industrial engineering, objectives of industrial engineering, system approach to industrial engineering, definition and concept of productivity, productivity measurements, factors influencing productivity and productivity improvement techniques. | 06 |
| 02 | **Value Engineering and Value Analysis:**
Distinction between value engineering & value analysis and their significance. Steps in value engineering & analysis and Check lists. | 05 |
| 03 | **Work study:**
Method study, micro-motion study and principles of motion economy.
Work measurement: time study, work sampling, standard data, PMTS; MOST. | 10 |
| 04 | **Work system design:**
Introduction to ergonomics and its scope in relation to work. Outline of the discipline of anatomy, physiology and psychology, with respect to ergonomics building blocks such as anthropometry and biomechanics.
Job evaluation, merit rating, incentive schemes, wage administration and business process reengineering. | 08 |
| 05 | **5.1 Facility Design:**
Facility location factors and evaluation of alternate locations; types of plant layout and their evaluation; computer aided layout design techniques; assembly line balancing; materials handling systems.
5.2 Concepts of Group Technology and cellular manufacturing | 09 |
6.1 Cost accounting:
Elements of cost, cost sheet, job costing and marginal costing.

6.2 Financial management:
Methods of depreciation, time value of money and techniques for evaluation of capital investments. Introduction to financial statements only.

Term Work

Term work shall consist of

1. One seminar presentation on a topic selected from the syllabus, with its significance explained as in a live situation in the industry, as applicable.
2. Assignments: On topics drawn from syllabus [At least 1 assignment per module].
3. Course Project: One Case study on value analysis of a live component from industry in a group of not more than 3 students.

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiment/programs and journal): 10 marks
- Course Project: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

2. Ergonomics at Work, Murrell.
7. Production Planning and Control, Samuel Elion.
8. Production and Operations Management, Joseph G. Monks
Objectives
1. To study working and operating principles of Vapour Compression and Vapour Absorption system
2. To study components of refrigeration and air conditioning systems
3. To Design air conditioning systems using cooling load calculations.

Outcomes: Learner will be able to…
1. Discuss fundamental refrigeration and air conditioning principles
2. Identify and locate various important components of the refrigeration and air conditioning system
3. Illustrate various refrigeration and air conditioning processes using psychometric chart
4. Design and analyze complete air conditioning system

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 01 | **Introduction to Refrigeration:** Methods of refrigeration, First and Second Law applied to refrigerating machines, Carnot refrigerator, Carnot heat pump, unit of refrigeration, Coefficient of Performance, Energy Efficiency Ratio (EER), BEE star rating
Air refrigeration systems: Bell Coleman cycle, applications.
Aircraft air refrigeration systems: Need for aircraft refrigeration, Simple, Bootstrap including evaporative cooling, Reduced ambient, Regenerative air cooling system, Comparison of these systems based on DART rating. | 08 |
| 02 | **Vapor Compression Refrigeration System:** Simple vapor compression cycle, Effect of liquid subcooling & superheating, effect of evaporator and condenser pressures, methods of subcooling, use of P-h charts, Actual VCR cycle, Two stage VCR cycle with Water intercooler, flash intercooler & liquid sub-cooler, multi-evaporators at different temperatures with individual/compound compressors and individual/multiple expansion valves.
Types of condensers, evaporators, expansion devices and Compressors.
Use of enhanced surface tubes in Heat Exchangers.
Cooling tower: Types of cooling towers, tower approach, tower range, tower efficiency, tower losses, tower maintenance.
Refrigerants- Desirable properties of refrigerants, ASHRAE numbering system for refrigerants. Thermodynamic, Chemical and Physical properties. Secondary refrigerants, ODP and GWP, Montreal protocol and India’s commitment, Recent substitutes for refrigerants. | 12 |
| 03 | **Vapor Absorption Refrigeration.** Importance of VAR system, COP of ideal VAR system, Amonia-water VAR system, Lithium Bromide – Water VAR system, Single and double effect, Electrolux refrigeration system. Solar VAR system.
Nonconventional Refrigeration Systems : Thermoelectric Refrigeration, Thermoacoustic Refrigeration, Vortex Tube Refrigeration | 06 |
| 04 | **Psychrometry**
Need for air conditioning, Principle of psychrometry, Psychrometric properties, chart and processes, air washers, requirements of comfort air conditioning, summer and Winter Air conditioning. | 05 |
|---|---|---|
| 05 | **Design of air conditioning systems**
Different Heat sources, - Adiabatic mixing of two air streams, Bypass factor, sensible heat factor, RSHF, GSHF, ERSHF, Room apparatus dew point and coil apparatus dew point, Ventilation and infiltration, Inside and Outside Design condition,
Cooling Load estimation, Introduction to Unitary Products viz. Room/Split and Packaged Air Conditioners, Introduction to recent developments viz. Variable Refrigerant Flow systems, VAV control systems, Inverter Units.
Human Comfort, Thermal exchange of body with environment, Effective temperature, Comfort chart, Comfort zone. | 08 |
| 06 | **Duct Design and Applications**
Friction chart for circular ducts. Equivalent diameter of a circular duct for rectangular ducts, Static pressure regain and equal pressure drop methods of duct design, Factors considered in air distribution system, Air distribution systems for cooling & heating,
Controls – LP/HP cutoff, Thermostats, Humidistats, Interlocking control, Electronic Controllers.
Applications Refrigeration & A/C
Ice plant – food storage plants – diary and food processing plants,
Food preservation ,Freeze Drying, A/c in textile, printing, pharmaceutical industry and Hospitals, Liquefaction of LNG, Liquefaction of gases (cryogenics), Deep sea water air-conditioning. | 09 |

List of Experiments

1. Study of domestic refrigerator along with wiring diagram
2. Study of the procedure of leak detection, evacuation and charging of refrigerant
3. Trial on window air conditioner or Air Conditioning Test Rig
4. Trial on water cooler or Refrigeration Test Rig
5. Trial on cooling tower
6. Study of humidification and dehumidification, heating and cooling, mixing of two air streams.
7. Report on different protocols to regulate global warming
8. Visit report- Refrigeration establishment like Cold storage plant or ice plant or air-conditioning plant
9. Steady state Simulation of VCR system with developed code or any analytical software

Term Work
Term work shall consist of minimum six experiments, assignments consisting numerical based on above syllabus, at least 3 numerical from each module.

The distribution of marks for term work shall be as follows:

- Laboratory work : 10 marks
- Assignments : 10 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Practical/Oral examination
1. Practical examination shall be conducted in a group of not more than 5 students. Examination shall be based on actual trials performed during the semester. Students are expected to actually take reading and plot the performance characteristics and comment.
2. Examiners are expected to evaluate results of each group and conduct oral based on the curriculum of the course.
3. The distribution of marks for practical/oral examination shall be as follows:
 i. Practical performance 15 marks
 ii. Oral 10 marks
4. Students work along with evaluation report to be preserved till the next examination

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
1. Refrigeration and air-conditioning – C P Arora, TMH
3. Refrigeration and air-conditioning – W F Stoker and J W Jones, TMH
4. Modern Air-conditioning practice – C P Arora, TMH
5. Refrigeration and air-conditioning- Manohar Prasad, New Age Int (P) Ltd.
6. Basic Refrigeration and air-conditioning- P.Ananthanarayana, TMH
7. ASHRAE Handbook of Fundamentals
8. ASHRAE Handbook of Systems
9. ASHRAE Handbook of Equipment
10. ISHRAE Air Conditioning Handbook
11. ISHRAE Refrigeration Handbook
Objective
1. To acquaint with micro electro mechanical systems.
2. To study fabrication methodology, modelling and simulation and characterization techniques of MEMS system

Outcomes: Learner will be able to…
1. Illustrate working and importance of MEMS system
2. Describe fabrication methodology of MEMS system
3. Illustrate Modeling and Simulation Techniques of MEMS system
4. Describe Characterization Techniques of MEMS system

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 01 | Introduction to MEMS & Applications
- Introduction to Micro-Electro-Mechanical Systems,
- Applications and Materials,
- Advantages & Disadvantages of Micro-sensors, and micro-actuators. | 03 |
| 02 | Sensors and Actuators in Micro-domain
- Concept of Sensors & Actuators,
- Sensing & Actuation Principles: Mechanical Sensing, Capacitive,
- Electrostatic, Electromagnetic, Piezo Resistive, Piezo Electric, Thin Films, Shape Memory Alloys
- Comb Drive Actuation & Sensing. Micro-mechanisms, Air-Bag Sensors, Chemical Sensors
- Sensors & Actuators for Automotive, Biomedical, Industrial applications
- Design of sensor and actuator for few applications such as automobile accelerometer, bimetallic temperature sensor, etc. | 06 |
| 03 | Fabrication Methods
Microfabrication Methods (VLSI Techniques)
- Positive and Negative Photoresists,
- Bulk Micromachining,
- Surface Micromachining,
- Etching (Isotropic and Anisotropic),
- Deposition techniques such as CVD (Chemical Vapor Deposition), Metallization Techniques.
3D High Aspect Ratio Techniques
- LIGA, AMANDA,
- Microstereolithography,
- IH-Process,
- X-Ray Techniques,
- Ion-beam Lithography,Bulk Lithography (layer-less 3D microfabrication) | 09 |
| 04 | Modelling and Simulation Techniques
- Scaling Laws, Governing Equations
- Modelling of Mechanical Structures via classical methods, Newtons Laws, Thermal Laws, Fluid Flow Analysis
- Micro-mechanism modelling and analysis techniques: Lumped Parameter Modelling and Distributed Parameter Modeling
- Modelling of Micro-channel as heat exchanger, accelerometers, microhinges, compound microstructures.
- Numerical Methods used for MEMS analysis. | 08 |
Characterization Techniques

Topography Methods (Optical, Electrical and Mechanical Methods)
- Microscopy, STM (Scanning Tunneling Microscopes),
- SEM (Scanning Electron Microscopes), AFM (Atomic Force Microscopes)

Mechanical Structure Analysis
- Deformation & Vibration Measurement Techniques (Piezo resistive and piezo electric)

Interferometry Techniques,
- ESPI (Electronic Speckle Pattern Interferometry),
- Laser Techniques, Laser Doppler Vibro-meters,

Fluid, Thermal and Chemical Techniques
- Fluid Flow Pattern Analysis, Electro-chemical Analysis,
- PIV Techniques
- Spectroscopy

Introduction to Nanotechnology
- CNT (Carbon Nano Tubes) Applications, its properties, and Fabrication Method,
- Nano-mechanical Systems (NEMS),
- Nano-tribology, & nano-indentation techniques,
- Domestic and Industrial Applications of nanotechnology

Term Work
Term work shall consist of 06 design based assignment (one assignment on each module) and two case studies of MEMS.
(Design based assignment shall encourage use of recent literature for the development of MEMS or microstructure.)

The distribution of marks for term work shall be as follows:
- Assignments : 15 Marks
- Case studies : 05 Marks
- Attendance (Theory & Practical’s) : 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References
Objectives
1. Study working principles of various renewable energy sources and their utilities
2. Study economics of harnessing energy from renewable energy sources

Outcomes: Learner will be able to…
1. Demonstrate need of different renewable energy sources and their importance
2. Calculate and analyse utilization of solar and wind energy
3. Illustrate design of biogas plant
4. Estimate alternate energy sources India

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction to Energy Sources: Renewable and non-renewable energy sources, energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements Global and National scenarios, Prospects of renewable energy sources.</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>Solar Energy: Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, Solar air heaters-types, solar driers, storage of solar energy-thermal storage, solar pond , solar water heaters, solar distillation, solar still, solar cooker, solar heating & cooling of buildings, photo voltaic - solar cells & its applications.</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>Wind Energy: Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of Aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.</td>
<td>08</td>
</tr>
<tr>
<td>04</td>
<td>Energy from Biomass: Biomass conversion technologies, Biogas generation plants, classification, advantages and disadvantages, constructional details, site selection, digester design consideration, filling a digester for starting, maintaining biogas production, Fuel properties of biogas, utilization of biogas.</td>
<td>06</td>
</tr>
<tr>
<td>05</td>
<td>Geothermal Energy: Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India. Energy from the ocean: Ocean Thermal Electric Conversion (OTEC) systems like open cycle, closed cycle, Hybrid cycle, prospects of OTEC in India. Energy from tides, basic principle of tidal power, single basin and double basin tidal power plants, advantages, limitation and scope of tidal energy. Wave energy and power from wave, wave energy conversion devices, advantages and disadvantages of wave energy</td>
<td>08</td>
</tr>
<tr>
<td>06</td>
<td>Energy Management: Energy economics, energy conservation, energy audit, general concept of total energy system, scope of alternative energy system in India.</td>
<td>04</td>
</tr>
</tbody>
</table>

List of Experiments
1. Demonstration of solar collector for air/water heating
2. Visit to wind farm/biogas plant
Term Work
Term work shall consist of experiments from the list, 5 assignments covering maximum portion of the syllabus and a report on factory visit.

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiments): 05 marks
- Assignments: 10 marks
- Visit report: 05 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3).
4. Total four questions need to be solved.

References
1. Non-conventional energy sources by G.D. Rai, Khanna Publishers
4. Fuel Cells by Bockris and Srinivasan; McGraw Hill.
6. Wind Power Technology, Joshua Earnest, PHI Learning, 2014
Course Code | Course/Subject Name | Credits
---|---|---
MEE8023 | Project Management & | 3+1

& Common with Mechanical Engineering

Objectives
1. To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
2. To apprise the students with the project management lifecycle and make them knowledgeable about the various phases from project initiation through closure.

Outcomes: Learner will be able to..
1. Apply selection criteria and select an appropriate project from different options.
2. Write work break down structure for a project and develop a schedule based on it.
3. Identify opportunities and threats to the project and decide an approach to deal with them strategically.
4. Use Earned value technique and determine & predict status of the project.
5. Capture lessons learned during project phases and document them for future reference.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Project Management Foundations
Definition of project management, project manager and project. Project types, project phases and knowledge areas.</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>Initiating Projects
How to get a project started; Your project sponsor and creating charter; The project team and team dynamics; running meetings</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>Planning Projects
Project estimating and scheduling techniques. PERT, CPM, GANTT chart. Introduction to any one project scheduling software.</td>
<td>08</td>
</tr>
<tr>
<td>04</td>
<td>Planning Projects
Risk planning methods; Cost planning; Communication plan and Final project plan.</td>
<td>04</td>
</tr>
<tr>
<td>05</td>
<td>Executing Projects
5.1 Team management; communicating and engaging with all stakeholders of the projects. Controlling Projects
5.2 Earned Value Management techniques for measuring your work completed; Using milestones for measurement; change requests and scope creep. Keeping up with the project, Updating the project, Project Issues management and Dealing with troubled projects.</td>
<td>08</td>
</tr>
<tr>
<td>06</td>
<td>Closing the Project
Customer acceptance; completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study.</td>
<td>06</td>
</tr>
</tbody>
</table>
Term Work

Term work shall consist of,

1. Assignments: On topics drawn from syllabus [At least 1 assignment per module].
2. One scheduling exercise on any project management software where writing WBS and Scheduling on PMIS software for a simple project or a Case Study on project selection/risk management.
3. Case Studies (at least 2 with inferences).

The distribution of marks for term work shall be as follows:

- Assignments: 10 marks
- Scheduling on PMIS software: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

1. Project Management and Control, Narendra Singh; Himalaya Publishing House
2. Preparation, Appraisal, Budgeting, Implementing and Review, Prasanna Chandra TMGH
3. Project Management: A managerial approach, Jack Meredith & Samuel Mantel, Wiley India, 7th Ed.
6. Project Management, Gopalan, Wiley India
7. Projects- Planning, Analysis, Selection, Financing, Implementation and Review, Prasanna Chandra, TMGH
Course Code: MEE8024
Course/Subject Name: Business Process Reengineering (BPR)
Credits: 3+1

Objectives
1. To understand the role and need of Business Process Reengineering in an organization.
2. To develop an insight as to how BPR tool/techniques are used strategically for business excellence and for the betterment of an organization.

Outcomes: Learner will be able to:
1. Demonstrate the use of BPR practices in an organization to enhance its competitiveness and overall productivity.
2. Identify the need and when to implement BPR in an organization.
3. Develop an understanding of how BPR helps in aspects like customer focus, innovation and quality management in various organizations.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction to BPR: Concept, Philosophy of BPR, Fundamental tenets of BPR, Benefits & pitfalls of BPR, myths of BPR and Drivers of BPR.</td>
<td>05</td>
</tr>
<tr>
<td>02</td>
<td>Process reengineering framework: Opportunity assessment, planning the process re-engineering project. Organizing for process reengineering.</td>
<td>05</td>
</tr>
</tbody>
</table>
| 03 | 3.1 Process analysis and design: a) Process analysis (b) Process design.
3.2 Planning and implementing the transition: Planning the transition, implementing the transition, tracking and measuring process performance. | 05 |
| 04 | Tools and techniques used in BPR: Case tools, Work flow systems, Imaging technology, Floware, Business design facility tools, and Change management tools. BPR in Manufacturing industry, BPR &ERP. | 08 |
| 05 | BPR implementation methodology, Success factors of BPR and Barriers to BPR. Risk and Impact measurement. | 06 |
| 06 | Change management in BPR: Introduction, Nature, process of change, Management of Change in BPR. Strategic aspects of BPR. | 07 |

Term Work
Term work shall consist of assignments (at least one assignment per module), case discussion (at least 3) covering a cross section of strategic advantages to be gained by applying BPR tools and techniques and a seminar presentation based on the topics mentioned in syllabus.

The distribution of marks for term work shall be as follows:
- Assignments: 10 marks
- Seminar/ case discussion: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.
Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
3. Business Process Reengineering, R Radhakrishnan, S. Balasubramanian, PHI.
5. Organizational transformation through BPR, Sethi, King, Pearson.
Course Code	Course/Subject Name	Credits
MEE8025 | Cryogenics | 3+1

Objectives
1. Study fundamental concepts of cryogenics
2. Study gas liquefaction and purification
3. Study operating in low temperature

Outcomes: Learner will be able to…
1. Explain historical developments in cryogenic systems
2. Describe gas liquefaction and purification systems/methods
3. Analyze system parameters and performance

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction to cryogenic systems – Chronology of cryogenic technology & Present areas involving cryogenic engineering. Low temperature properties of engineering materials: Mechanical, thermal and magnetic properties of cryogenic fluids</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>Gas Liquefaction systems: System performance parameters, Thermodynamically ideal systems, Liquefaction systems for Neon, Hydrogen & Helium, critical components of liquefaction systems. Gas purification methods: Refrigeration purification, Physical adsorption.</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>Cryogenic Refrigeration system: Ideal Refrigeration systems, Refrigerators for temperatures above 2K: Joule-Thomson refrigeration system, Expansion engine refrigeration system, Philips refrigerator, V-M refrigerator, Gifford-McMahon refrigerator, Regenerators, Refrigerators for temperatures below 2K: Magnetic cooling, Magnetic refrigeration system</td>
<td>08</td>
</tr>
<tr>
<td>04</td>
<td>Measurement systems for low temperature: Introduction, Metallic resistance thermometer, semiconductor resistance thermometer, Thermocouples, Constant-volume gas thermometer, vapour pressure thermometer</td>
<td>06</td>
</tr>
<tr>
<td>05</td>
<td>Liquid Level Measurement: Hydrostatic gauges, Electric resistance gauges, Thermodynamic liquid level gauge</td>
<td>04</td>
</tr>
<tr>
<td>06</td>
<td>Application of Cryogenics: Cryogenic Fluid Storage systems, Insulations, Importance of vacuum technology in cryogenics, Application of cryogenics system, superconducting devices, Space Technology, Cryogenics in Biology and Medicine.</td>
<td>08</td>
</tr>
</tbody>
</table>

List of Experiments
1. Study of gas liquefaction and purification systems
2. Study of cryogenic refrigeration systems
3. Study of cryocoolers
4. Case study on applications of cryogenics
5. Visit report to gas liquefaction plant
Term Work
Term work shall consist of experiments from the list, 3 assignments covering maximum portion of the syllabus.

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiments): 10 marks
- Assignments: 05 marks
- Factory visit report: 05 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus.
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3).
4. Total four questions need to be solved.

References
1. Cryogenics Systems, R. Barron Oxford University Press
4. Cryogenic Engineering, T.M.Flynn, Marcel Dekker
Objectives
1. Study basic principles of actual automobile systems
2. Study important systems in an automobile
3. Study recent and modern trends in automobile sector

Outcomes:
Learner will be able to…
1. Demonstrate & explain various systems in an automobile
2. Describe importance and features of different systems like axle, differential, brakes, steering, suspension, wheel and balancing etc.
3. Explain principle of operation, construction and applications of various sensors used in modern automobile

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction
Transmissions: Necessity of gear box, Sliding mesh, Constant mesh, Synchromesh and epicyclic gear box, Overdrives and hydrodynamic torque converter, Trouble shooting and remedies.
Live axle and differential: Final drive, spiral, bevel, Hypoid and worm drives. Types of live axles, semi, three quarter and full floating axles. Necessity of differential, Conventional and non-slip differential, Trouble shooting and remedies.</td>
<td>05</td>
</tr>
<tr>
<td>02</td>
<td>Brakes
Requirement of brake, Classification of brakes, Mechanical, Hydraulic, Pneumatic, Electro and vacuum brakes. Disc brakes, Braking of front wheel, Rear wheel and four wheel brakes, Brake trouble shooting. Introduction to antilock braking system (ABS).
Steering and Front axles
Steering geometry, Steering requirements, Steering linkages and steering gears, over steer and under steer. Cornering power, Reversibility of steering gears, Types of front axles and their constructions. Trouble shooting and remedies.</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>Suspension
Objects of suspension, Basic requirements, Air suspension and its features, Independent suspension, Forces acting in independent suspension, Sprung and un-sprung mass, Pitching, rolling and bouncing, Shock absorbers.
Wheels and Tyres
Requirements of wheels and tyres, Constructional features, Types of tyres, Inflation Pressure and its importance, Application to ride and stability, Trouble shooting and remedies.</td>
<td>07</td>
</tr>
<tr>
<td>04</td>
<td>Electrical system
Battery: Types of battery, Lead-Acid, Alkaline, ZEBRA, Sodium Sulphur and Swing, Ratings, charging, Maintenance and testing of Lead-Acid battery.
Starting system: Requirements, Various torque terms used, Starter motor drives; Bendix, Follo through, Barrel, Rubber compression, Compression Spring, Friction Clutch, Overrunning Clutch, Dyer. Starter motor solenoids and switches, Glow plugs.
Alternator: Principle of operation, Construction, Working, Rectification from AC to DC.</td>
<td>06</td>
</tr>
</tbody>
</table>
05 **Body Engineering**
Importance of Body design, Materials for body construction-Styling forms-Coach and bus body style, layouts of passenger cars, Bus and truck bodies. Aerodynamic drag - Aerodynamic lifts and pitching moments, Side force, Yawing moments and rolling moments.
Chassis types and structure types: Open, Semi integral and integral bus structure.

06 **Recent trends in Automobiles**
Electronic Control module (ECM), operating modes of ECM (closed loop and open loop) Inputs required and output signals from ECM, Electronic Spark control, Air Management system, Idle speed control. Construction, working & application of temperature sensors, inductive sensors, Position sensors (rotary, linear). Hot wire and thin film air flow sensors, vortex flow/turbine fluid sensors, Optical sensor, Oxygen sensors, Light sensors, methanol sensors, Rain sensor, New developments in the sensor technology

List of Exercises
1. Dismantling and assembly of gear boxes.
2. Dismantling and assembly of brakes.
3. Dismantling and assembly of steering mechanisms.
4. Dismantling and assembly of rear axle and differential.
5. Dismantling and assembly of suspension systems
6. Demonstration of battery charging and starting systems.

Term Work
Term work shall consist of at least 3 exercises from the list with the report, case study presentation covering recent trends in automobile report and a report on automotive factory/service center visit.

The distribution of marks for term work shall be as follows:
- Laboratory work (Exercises) : 10 marks
- Case study: 05 marks
- Visit report: 05 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References
1. Automotive Mechanics, William Cruose & Donald L. Anglin, Tata Mcgraw Hill
4. The Automobile, Harbans Singh Reyat, S. Chand & Co.
5. Automobile Engineering, R. K. Rajput, Laxmi Publication
7. Automobile Engineering, Kirpal Singh Vol I & II, Standard publishers Distributors, Delhi
8. Automobile Engineering, K. K. Jain & R.B. Asthana, Tata Mcgraw Hill
9. Automotive Mechanics, S. Srinivasan, Tata Mcgraw Hill
11. Automobile Electrical and Electronics, Tom Denton
13. Computerised Engine Control, Dick King, Delmar publisher.
<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Process Design Parameters</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>Introduction to Basic process requirement of plants and projects, Importance of codes and standards and their applications, P&ID, Process Data Sheet, PFD and other documents used for designing. Introduction to various design codes required in Process Equipment Design such as; ASME, Section VIII; API; ASTM; TEMA, etc. and their significance. Review of Design pressures, temperatures, design stresses, factor of safety, minimum shell thickness and corrosion allowance, weld joints efficiency, design loading, stress concentration and thermal stresses, failure criteria. Selection of material for process equipment’s using ASME Codes.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Design of Pressure Vessels</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>Types of pressure vessels, selection of various parameters for their design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure vessel subjected to Internal Pressure: Complete design as per ASME code of Cylindrical and spherical shells. Design of various end closures such as: Flat, Hemispherical, Torrispherical, Elliptical and conical. Design of openings : nozzles and manholes. Design of Flanged joints; Gasket selection and design Design of supports for process vessels.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure vessel subjected to External Pressure: Design of shell, heads, nozzles, flanged joints and stiffening rings. Design of Tall Vessels / Tall Columns: Determination of equivalent stress under combined loadings including seismic and wind loads application of it to vertical equipment like distillation column.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Vessel Supports</td>
<td>06</td>
</tr>
<tr>
<td>4</td>
<td>Design of Storage Tanks</td>
<td>06</td>
</tr>
<tr>
<td>5</td>
<td>Heat Exchangers</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>Heat exchangers: Design of vessels, Design of Shell and Tube Heat Exchanger, Study and design of various types of jackets like plain half coil, channel, limpet coil.</td>
<td></td>
</tr>
</tbody>
</table>
6
\begin{tabular}{|c|c|}
\hline
\textbf{Agitator} & 05 \\
\text{Study of various types of agitators and their applications. Baffling,} & \\
\text{Power requirement of agitation. General design of agitator including} & \\
\text{blades, shaft, blade assembly.} & \\
\hline
\end{tabular}

List of assignments

1. Explain types of process equipments (static and rotary)
2. Explain inspection and testing requirement for pressure vessel
3. Briefly explain design of storage tank
4. Discuss types of heat exchangers

Design assignment on pressure vessel: Design of shell, formed heads for internal and external pressure, flanges, supports of pressure vessel and preparation of general arrangement drawing and detailed fabrication drawing with bill of materials

Term Work

Term work shall consist of assignments from the list and design of pressure vessel with report containing working drawing.

The distribution of marks for term work shall be as follows:

- Assignment : \textbf{10 marks}
- Design assignment: \textbf{10 marks}
- Attendance (Theory and Practical) : \textbf{05 marks}

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40\% of curriculum) and the other is either a class test (on minimum 70\% of curriculum) or assignment on live problems or course project.

Theory Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

1. Dr. M.V. Joshi, “Process Equipment Design”, Mc-Millan
2. Browell and Young, “Process Equipment Design”, John Wiley
4. Standard Codes such as: ASME SEC-VIII, Div I & II; ASTM; API; TEMA.
Objectives
1. Study various alternatives for conventional fuel used in SI and CI engines
2. Study electrically driven and solar driven vehicles

Outcomes: Learner will be able to…
1. Identify & explain future trends and development in IC engine fuel
2. Analyze engine performance using blended fuel
3. Explain working of electrical and solar powered vehicle

<table>
<thead>
<tr>
<th>Module</th>
<th>Detailed Contents</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction: Working processes in I.C. engine, fuel efficiency, fuel requirement, ignition quality, volatility, sources of fossil fuels, scope of availability of fossil fuels, need for alternative fuels, engine life.</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>Alcohols: Sources, methanol & ethanol, production methods, properties of methanol & ethanol as engine fuels, Use of alcohols in S.I. & C.I. engines, performance of methanol & gasoline blends, alcohol diesel emulsions, dual fuel systems, emission characteristics.</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>Hydrogen: Properties of hydrogen with respect to its utilization as a renewable forms of energy, sources of hydrogen, production, transportation, storage, application & economics of hydrogen. Fuel Cells: Hydrogen, methanol fuel cells, power rating and performance. Heat dissipation, layout of a fuel cell vehicle.</td>
<td>08</td>
</tr>
<tr>
<td>04</td>
<td>Gaseous Fuel: L.P.G., C.N.G., bio-gas, their properties as engine fuels, fuel metering systems, combustion characteristics, effect on performance & emission, cost, safety.</td>
<td>06</td>
</tr>
<tr>
<td>05</td>
<td>Bio-Diesels: Jatropha oil, Karanji oil, Neem oil, Rice bran oil, Linseed oil, Sunflower oil, properties, diesel & biodiesel blends, engine performance.</td>
<td>06</td>
</tr>
</tbody>
</table>

List of Experiments
1. Study of physical & chemical properties of fuels
2. Study of Ethanol Production, properties of ethanol as S.I. engine fuel
3. Study of Methanol Production, properties of methanol as C.I. engine fuel
4. Study of fuel cell and fuel cell powered vehicle
5. Trial on SI/CI engine using alternate gaseous fuel
6. Study of solar powered vehicle
7. Layout preparation for Hybrid vehicles.
Term Work
Term work shall consist of minimum 7 experiments from the list, 3 assignments covering maximum portion of the syllabus.

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiments) : 10 marks
- Assignments : 10 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
1. Introduction to Internal Combustion Engines, Richard Stone, McMillan, London
2. Internal Combustion Engines, Shyam Agrawal, New Age International
13. Renewable Energy Engineering And Technology: Principles And Practice, V. V. N. Kishore (Editor), Earthscan Publications (Apr 2009)
Course Code: MEE8029
Course/Subject Name: Enterprise Resource Planning
Credits: 3+1

Objectives:
1. To help the students acquire the basic understanding of major enterprise wide business processes and their integration through IT enabled applications.
2. To develop a managerial perspective to leverage them for competitive advantage.

Outcomes: Learner will be able to…
1. Demonstrate understanding the role and functions of ERP in carrying out business processes in an industry.
2. Develop the ability to integrate various resources for optimization in the industry as well as for strategic utilization of IT enabled services and functions.
3. Report on the reasons for the success (or failure) of a business strategy in a competitive environment.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 01 | **Process View of Organization**
Introduction to functional areas and business processes, Functional areas and business processes of a very small business, Functional area information systems, Process modeling, Process improvement, ERP workflow tools, Implementing ERP systems, Implementation and change management. | 06 |
| 02 | **Approaches to process improvement**
Managerial implications of Process Reengineering efforts, Kaizen, Total Quality Management, Implementing new process, Critical success factors of reengineering project and Comparison of different approaches. | 06 |
| 03 | **Introduction to Enterprise Resource Planning (ERP)**
ERP - Introduction, Evolution of Enterprise applications, Reasons for the growth of the ERP market, Operational advantages of Enterprise Wide Applications, Failure of ERP packages, ERP packages, Enterprise application implementation projects: Rationale for ERP, Enterprise Architecture planning, Selection of an ERP vendor, Advantages of and problems in ERP implementation, Overview of ERP modules, ERP and related technologies. | 08 |
| 04 | **ERP – Manufacturing Perspective**
Material requirement planning (MRP-I), closed loop MRP, Manufacturing Resource Planning (MRP-II), Distribution Requirements Planning and Product Data Management. | 04 |
| 05 | **Supply Chain and CRM Applications**
Overview of Supply and demand chain, SCM framework, Advanced planning systems, Introduction to CRM applications and Growth of CRM Applications. | 05 |
| 06 | **Introduction to SAP R/3**
Term Work
Term work shall consist of at least six assignments on concepts, case studies and analysis based on the topics mentioned above.

The distribution of marks for term work shall be as follows;
- Lab work (Case Studies: at least 2): 10 marks
- Assignments: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
3. CRM at the speed of Light, Greenberg, Paul, TMH.
5. ERP strategy, Vinod Kumar Garg, Bharat Vakharia and Jaico.
Course Code: MEE80210
Course/Subject Name: World Class Manufacturing (WCM)
Credits: 3+1

Objectives
1. To familiarize the students with the concepts of Business excellence and competitiveness.
2. To apprise the students with the need to meet the current and future business challenges.
3. To prepare the students to understand the current global manufacturing scenario.

Outcomes:
Learner will be able to:
1. Demonstrate the relevance and basics of World Class Manufacturing.
2. Identify the factors of competitiveness and performance measures based on which, global manufacturing success is benchmarked.
3. Draw current Status of Indian Manufacturing scenario and design and develop a roadmap to achieve world class manufacturing status.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
</tr>
</thead>
</table>
| **01** | **Historical Perspective**
| **02** | **Benchmark, Bottlenecks and Best Practices**
| **03** | **System and Tools for World Class Manufacturing**
| **04** | **HR Dimensions in WCM – WCM Strategy Formulation**
4.1 Adding value to the organization: Organizational learning, techniques of removing Root cause of problems, People as problem solvers, New organizational structures.
4.2 Associates: Facilitators, Teams man ship, Motivation and reward in the age of continuous improvement. |
| **05** | **Characteristics of WCM Companies**
Performance indicators like POP, TOPP and AMBITE systems.
Other features of WCM: Supply Chain Management & key issues in SCM, Agile Manufacturing, Green Manufacturing, Role of Information system in WCM, Introduction to Knowledge management, Study of various performance measures in world class organization. |
| **06** | **Total Quality Management (TQM)**
Definition, Understanding quality, Evolution of TQM, Framework for TQM, Commitment and leadership, Customer satisfaction, Employee involvement, Continuous process improvement, Supplier partnership, Performance measures, Formulation and implementation of TQM: Case Study. |
Term Work
Term work shall consist of at least six assignments on topics drawn from the syllabus [1 assignment per module] and at least 3 case studies and analysis based on the topics mentioned above.

The distribution of marks for term work shall be as follows.

- Assignments: 10 marks
- Lab work (Case Studies: at least 3, with inferences): 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
2. World Class Manufacturing - The Lesson of Simplicity, Schonberger R. J, Free Press, 1986

Course Code: MEE80211
Course/Subject Name: Nanotechnology
Credits: 3+1

Objectives
1. To acquaint learner with fundamental multidisciplinary nature of nanotechnology
2. To study applications and implementation of nanotechnology

Outcomes: Learner will be able to…
1. Discuss basics of nanotechnology
2. Identify various nanostructured materials
3. Illustrate characterization techniques and properties of nanomaterials

<table>
<thead>
<tr>
<th>Modules</th>
<th>Detailed Content</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction to Quantum mechanics, Nanostructural Materials and Low dimensional structures: Basic principles of Quantum mechanics (why and how classical mechanics fails), probability amplitude, wave functions, eigen states and eigen values, Quantum wells, Quantum wires, Quantum dots, Nano clusters and Nano crystals.</td>
<td>06</td>
</tr>
<tr>
<td>02</td>
<td>Quantum mechanical application of Nanotechnology: Quantum well and quantum dot lasers, ultra-fast switching devices, nano magnets for sensors and high density data storage, photonic integrated circuits, long wave length detectors, carbon nanotube, luminescence from porous silicon, spin-tronic devices.</td>
<td>06</td>
</tr>
</tbody>
</table>
and Nanograined Materials. Molecular Electronics and Nanoelectronics; Nanobots; Biological Applications of Nanoparticles; Catalysis of Gold Nanocrystals; Bandgap Engineered Quantum Devices: Quantum well devices, Quantum dot devices; Nanomechanics; Carbon Nanotube Emitters; Photoelectrochemical Cells; Photonic Crystals and Plasmon Waveguides.

<table>
<thead>
<tr>
<th>04</th>
<th>Synthesis and types of nano particles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nanocounters, Nanoshells, Nanohorns, Nanowires, Nanosprings, Nanorods, Nanofilters, Nanopens, Nanopencils, Nanopipettes, Nanopens, Nanoplotter, Nanobalance, Nanobeads, Nanoguitar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>05</th>
<th>Characterization and Properties of Nanomaterials</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>06</th>
<th>Application of nano chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semiconductor and Microelectronics including MEMS, Optical Magnetic including memory, readwrite, flash, bubble memories etc. Mechanical including Nanocomposites, thermal barriers etc. Biomedical including Pharmacology, Virology etc.</td>
</tr>
</tbody>
</table>

Term Work
Term work shall consist of at least six assignments covering complete syllabus. One group seminar by maximum 3 members in a group on topic relevant to syllabus contents
The distribution of marks for term work shall be as follows:

- Assignments: 10 marks
- Seminar: 10 marks
- Attendance (Theory & Practical’s): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References
1. Introduction to nanotechnology, Charles P Poole Jr and Frank J Owens, Wiely
2. Introduction to Nanosciences and Nanotechnology, Chattopadhyay K K, Banerjee A N, PHI Learning
4. Nanotechnology, Rathi R K, S Chand
5. Nano: The essentials Understanding Nanosciences and Nanotechnology, TMH
6. Nanotechnology, Lynn E Foster, Pearson
7. Micromanufacturing and Nanotechnology, Mahalik N P, New Age International
Objectives
1. To acquaint learner with basic process of Product engineering and visualization.
2. To study linear and non-linear structural analysis
3. To acquaint with kinematic motion study analysis
4. To study design optimization using simulation

Outcomes: Learner will be able to…
1. Render and animate the appearance and functionality of a product
2. Perform linear and non-linear structural analysis
3. Perform kinematic motion study analysis
4. Design optimization using simulation
5. Cloud-based mechanical simulation

<table>
<thead>
<tr>
<th>Modules</th>
<th>Detailed Content</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>Digital prototyping process; Introduction to product engineering. Introductions to design changes and Automation. Visualization Extending Design Data</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Product Engineering & Visualization</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>Designing for change Automating Design and configuration, Design parameters, engineering calculators, Automation using illogic for parts & assemblies, Model relationships, Design visualization throughout product development, Benefits of design visualization, Utilizing Engineering Data throughout Organization. Design approval, Sales and Marketing support & plastic part visualization.</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Simulation & Validation - Linear & Nonlinear Analysis</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>Role of simulation and validation in product development process. FEM (Theory and requirements) Meshing load and constraints, part material selection and optimization, Linear Structural Analysis Benefits of nonlinear simulation, Theory and requirements, Advanced Meshing. Advanced Material Properties contact types, result reviews. Kinematics role in simulation and optimization</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Kinematics Motion & Mechanical Event</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>Theory benefits & kinematic requirement: Joints, Forces, Assembly Structure & results. Benefits of combining analysis information, Design Optimization, Motion forces, Component FEA from motion forces, Design optimization, Results</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Design Optimization and Change</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>Design Changes, Design Optimization; Model Relationships Simulation Results; Manufacturing & service, Leveraging engineering data throughout the organization, Benefits for field service and manufacturing, Story Board, Annotations and Descriptions, Snapshots & Assembly instruction video</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Design Optimization and CFD Analysis</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>The role of CFD within the product design cycle, CFD Analysis General Theory, Benefits of CFD simulation Model Setup, Meshing Fluid flow loads & Analysis results</td>
<td></td>
</tr>
</tbody>
</table>
List of Digital Prototyping Projects
1. General engineering calculators and rule based design project
2. Implementation of design changes and rules for automotive seat switches and gears
3. Showcase design visualization of automotive seat
4. General linear component analysis project
5. Automotive single component simulation and validation
6. General nonlinear analysis project
7. General mechanical kinematics motion projects
8. General mechanical event simulation project
9. General design optimization and change workflow projects
10. Automotive cooling airflow or lumbar value study
11. General Cloud-based mechanical simulation

Term Work
Term work shall consist of above projects in group of not more than 2 students and seminar on latest trends/developments in Product Design
The distribution of marks for term work shall be as follows:
- Course Project: 15 Marks
- Seminar: 05 Marks
- Attendance (Theory & Practical’s): 05 Marks
The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
5. Mastering Autodesk Inventor by Sybex
6. Autodesk Inventor 2012 for Designers by CADCIM Technologies
9. Autodesk Simulation Multiphysics ASCENT official training guide
10. Autodesk Student & Educator Learning Center
11. Autodesk SIM 360 Learning resources
Objective

1. To acquaint with the process of undertaking literature survey/industrial visit and identifying the problem
2. To familiarize the process of solving the problem in a group
3. To acquaint with the process of applying basic engineering fundamental in the domain of practical applications
4. To inculcate the process of research

Outcome: Learner will be able to...

1. Do literature survey/industrial visit and identify the problem
2. Apply basic engineering fundamental in the domain of practical applications
3. Cultivate the habit of working in a team
4. Attempt a problem solution in a right approach
5. Correlate the theoretical and experimental/simulations results and draw the proper inferences
6. Prepare report as per the standard guidelines.

Guidelines for Project

- Students should do literature survey/visit industry/analyze current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor. Students should use multiple literatures and understand the problem.
- Students should attempt solution to the problem by experimental/simulation methods.
- The solution to be validated with proper justification and report to be compiled in standard format.

Guidelines for Assessment of Project I

- Project I should be assessed based on following points
 - Quality of problem selected
 - Clarity of Problem definition and Feasibility of problem solution
 - Relevance to the specialization
 - Clarity of objective and scope
 - Breadth and depth of literature survey
- Project I should be assessed through a presentation by the student project group to a panel of Internal examiners appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Project II

- Project II should be assessed based on following points
 - Quality of problem selected
 - Clarity of Problem definition and Feasibility of problem solution
 - Relevance to the specialization / Industrial trends
 - Clarity of objective and scope
 - Quality of work attempted
 - Validation of results
 - Quality of Written and Oral Presentation
- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Project II should be assessed through a presentation by the student project group to a panel of Internal and External Examiners approved by the University of Mumbai
- Students should be motivated to publish a paper based on the work in Conferences/students competitions.